- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- + 等比数列
- 等比数列的定义
- 等比数列的通项公式
- 等比数列的性质
- 等比数列的函数特性
- 等比数列的前n项和
- 等比数列前n项和的性质
- an与Sn的关系——等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
等比数列{an}的首项为2,项数为奇数,其奇数项之和为,偶数项之和为
,这个等比数列前n项的积为Tn(n≥2),则Tn的最大值为 ( )
A.![]() | B.![]() |
C.1 | D.2 |
有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒的同时将自身分裂为2个,现在有1个这种细菌和200个这种病毒,问细菌将病毒全部杀死至少需要( )
A.6秒钟 | B.7秒钟 | C.8秒钟 | D.9秒钟 |
已知首项为
的等比数列
的前
项和为
,且
,
,
成等差数列.
(1)求数列
的通项公式;
(2)对于数列
,若存在一个区间
,均有
,则称
为数列
的“容值区间”.设
,试求数列
的“容值区间”长度的最小值.







(1)求数列

(2)对于数列






