- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断等差数列
- + 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- 由递推关系证明数列是等差数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在数列{an}中,已知a1=1,a2=2,且数列{an}的奇数项依次组成公差为1的等差数列,偶数项依次组成公比为2的等比数列,数列{bn}满足
,记数列{bn}的前n项和为Sn,
(1)写出数列{an}的通项公式;
(2)求Sn;
(3)证明:当n≥6时,
.

(1)写出数列{an}的通项公式;
(2)求Sn;
(3)证明:当n≥6时,

已知数列
中,
,且点
(
)在直线
上.
(1)求数列
的通项公式;
(2)对任意的
,将数列
落入区间
内的项的个数记为
,求
的通项公式;
(3)对于(2)中
,记
,数列
前
项和为
,求使等式
成立的所有正整数
、
的值.





(1)求数列

(2)对任意的





(3)对于(2)中








平面直角坐标系中,
为原点,射线
与
轴正半轴重合,射线
是第一象限的角平分线,在
上有点列
,在
上有点列
,已知
,
,
,
.
(1)求点
,
的值;
(2)求
,
的坐标;
(3)求
面积的最大值,并说明理由.












(1)求点


(2)求


(3)求


设等差数列
的前
项和为
,且
,
.数列
的前
项和为
,满足
.
(1)求数列
的通项公式;
(2)写出一个正整数
,使得
是数列
的项;
(3)设数列
的通项公式为
,问:是否存在正整数
和
,使得
,
,
成等差数列?若存在,请求出所有符合条件的有序整数对
;若不存在,请说明理由.









(1)求数列

(2)写出一个正整数



(3)设数列







