- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断等差数列
- + 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- 由递推关系证明数列是等差数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(1)求数列{an}的通项;
(2)求数列{
}的前n项和Sn.
(1)求数列{an}的通项;
(2)求数列{

数列
为等差数列,设
(1)证明数列
为等比数列;
(2)若
,求数列
的通项公式;
(3)在(2)的条件下,当数列
的公差
时,求数列
的前n项和
的最大值


(1)证明数列

(2)若


(3)在(2)的条件下,当数列




已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.
(1)求{an}的通项公式;
(2)设cn=an+bn,求数列{cn}的通项公式.
(1)求{an}的通项公式;
(2)设cn=an+bn,求数列{cn}的通项公式.
已知{an}为等差数列,且a3=-6,a6=0.
(1)求{an}的通项公式;
(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求{bn}的前n项和公式.
(1)求{an}的通项公式;
(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求{bn}的前n项和公式.
数列{an}中,a1=1,n≥2时,其前n项的和Sn满足Sn2=an(Sn﹣
)
(1)求Sn的表达式;
(2)设bn=
,数列{bn}的前n项和为Tn,求
.

(1)求Sn的表达式;
(2)设bn=

