- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断等差数列
- + 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- 由递推关系证明数列是等差数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点Pn(an,bn)都在直线L:y=2x+2上,P1为直线L与x轴的交点,数列{an}成等差数列,公差为1(n∈N*).
(I)求数列{an},{bn}的通项公式;
(II)求证:
(n≥3,n∈N*).
(I)求数列{an},{bn}的通项公式;
(II)求证:

已知函数f(x)=
(a、b为常数且a≠0)满足f(2)=1且f(x)=x有唯一解.
(1)求f(x)的表达式;
(2)记xn=f(xn﹣1)(n∈N且n>1),且x1=f(1),求数列{xn}的通项公式.
(3)记 yn=xn•xn+1,数列{yn}的前n项和为Sn,求证Sn<
.

(1)求f(x)的表达式;
(2)记xn=f(xn﹣1)(n∈N且n>1),且x1=f(1),求数列{xn}的通项公式.
(3)记 yn=xn•xn+1,数列{yn}的前n项和为Sn,求证Sn<
