- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 判断等差数列
- + 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- 由递推关系证明数列是等差数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知某算法的流程图如图所示,将输出的
值依次记为
,
,
(1)若程序运行中输出的某个数组是
,则
※ ;
(2)程序结束时,共输出
的组数为 ※ .




(1)若程序运行中输出的某个数组是


(2)程序结束时,共输出


我们称满足以下两个条件的有穷数列
为
阶“期待数列”;①
;②
.
(1)若数列
的通项公式是
,试判断数列
是否为2014阶“期待数列”,并说明理由;
(2)若等比数列
为
阶“期待数列”,求公比
及数列
的通项公式;
(3)若一个等差数列
既是(
)阶“期待数列”又是递增数列,求该数列的通项公式.




(1)若数列



(2)若等比数列




(3)若一个等差数列


(本小题满分16分)记公差d≠0的等差数列{an}的前n项和为Sn,已知a1=2+
,S3=12+
.
(1)求数列{an}的通项公式an及前n项和Sn;
(2)记bn=an-
,若自然数n1,n2,…,nk,…满足1≤n1<n2<…<nk<…,并且
,
,…,
,…成等比数列,其中n1=1,n2=3,求nk(用k表示);
(3)试问:在数列{an}中是否存在三项ar,as,at(r<s<t,r,s,t∈N*)恰好成等比数列?若存在,求出此三项;若不存在,请说明理由.


(1)求数列{an}的通项公式an及前n项和Sn;
(2)记bn=an-




(3)试问:在数列{an}中是否存在三项ar,as,at(r<s<t,r,s,t∈N*)恰好成等比数列?若存在,求出此三项;若不存在,请说明理由.
设
,对于项数为
的有穷数列
,令
为
中最大值,称数列
为
的“创新数列”.例如数列
3,5,4,7的创新数列为3,5,5,7.
考查自然数
的所有排列,将每种排列都视为一个有穷数列
.
(1)若
,写出创新数列为3,4,4,4的所有数列
;
(2)是否存在数列
的创新数列为等比数列?若存在,求出符合条件的创新数列;若不存在,请说明理由.
(3)是否存在数列
,使它的创新数列为等差数列?若存在,求出满足所有条件的数列
的个数;若不存在,请说明理由.








考查自然数


(1)若


(2)是否存在数列

(3)是否存在数列

