- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 等差数列及其通项公式
- 判断等差数列
- 利用定义求等差数列通项公式
- 验证是否为等差数列中的项
- 等差数列通项公式的基本量计算
- 由递推关系证明数列是等差数列
- 等差中项
- 等差数列的性质
- 等差数列的函数特性
- 等差数列的前n项和
- an与Sn的关系——等差数列
- 等差数列前n项和的性质
- 等差数列前n项和的函数特性
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
是数列
的前n项和,对任意
都有
,(其中k、b、p都是常数).
(1)当
、
、
时,求
;
(2)当
、
、
时,若
、
,求数列
的通项公式;
(3)若数列
中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”。当
、
、
时,
.试问:是否存在这样的“封闭数列”
.使得对任意
.都有
,且
.若存在,求数列
的首项
的所有取值的集合;若不存在,说明理由.




(1)当




(2)当






(3)若数列











在①
,②
这两个条件中任选一个,补充在下面问题中,若问题中的正整数
存在,求
的值;若
不存在,请说明理由.
设
为等差数列
的前
项和,
是等比数列,______,
,
,
.是否存在
,使得
且
?





设










我国古代著名的
周髀算经
中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷
长一丈三尺五寸,夏至晷长一尺六寸
意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为
分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分
则“立春”时日影长度为











A.![]() | B.![]() | C.![]() | D.![]() |