- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- + 等差数列
- 等差数列及其通项公式
- 等差中项
- 等差数列的性质
- 等差数列的函数特性
- 等差数列的前n项和
- an与Sn的关系——等差数列
- 等差数列前n项和的性质
- 等差数列前n项和的函数特性
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
的通项公式为
.
(1)若
成等比数列,求
的值;
(2)是否存在
使得
成等差数列,若存在,求出常数
的值;若不存在,请说明理由;
(3)求证:数列中的任意一项
总可以表示成数列中的其他两项的积.


(1)若


(2)是否存在



(3)求证:数列中的任意一项

若
是函数
的两个不同的零点,且
这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则
的值等于( )




A.6 | B.7 | C.8 | D.9 |