- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- + 等差数列
- 等差数列及其通项公式
- 等差中项
- 等差数列的性质
- 等差数列的函数特性
- 等差数列的前n项和
- an与Sn的关系——等差数列
- 等差数列前n项和的性质
- 等差数列前n项和的函数特性
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
己知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列
的前n项和,若Tn≤
¨对
恒成立,求实数
的最小值.
(1)求数列{an}的通项公式;
(2)设Tn为数列




设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn=
,n∈N*,其中c为实数.
(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差数列,证明:c=0.

(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差数列,证明:c=0.
已知{an}是公比为q的等比数列,且am、am+2、am+1成等差数列.
(1)求q的值;
(2)设数列{an}的前n项和为Sn,试判断Sm、Sm+2、Sm+1是否成等差数列?并说明理由.
(1)求q的值;
(2)设数列{an}的前n项和为Sn,试判断Sm、Sm+2、Sm+1是否成等差数列?并说明理由.