- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 根据数列递推公式写出数列的项
- 由递推关系式求通项公式
- + 由递推数列研究数列的有关性质
- 求递推关系式
- 递推数列的实际应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
正整数数列
满足:
,
(1)写出数列
的前5项;
(2)将数列
中所有值为1的项的项数按从小到大的顺序依次排列,得到数列
,试用
表示
(不必证明);
(3)求最小的正整数
,使
.



(1)写出数列

(2)将数列




(3)求最小的正整数


对于各项均为正数的无穷数列
,记
,给出下列定义:
①若存在实数
,使
成立,则称数列
为“有上界数列”;
②若数列
为有上界数列,且存在
,使
成立,则称数列
为“有最大值数列”;
③若
,则称数列
为“比减小数列”.
(1)根据上述定义,判断数列
是何种数列?
(2)若数列
中,
,
,求证:数列
既是有上界数列又是比减小数列;
(3)若数列
是单调递增数列,且是有上界数列,但不是有最大值数列,求证:
,
.


①若存在实数



②若数列




③若


(1)根据上述定义,判断数列

(2)若数列




(3)若数列



设集合
由满足下列两个条件的数列
构成:①
②存在实数
使
对任意正整数
都成立.
(1)现在给出只有5项的有限数列
其中
;
试判断数列
是否为集合
的元素;
(2)数列
的前
项和为
且对任意正整数
点
在直线
上,证明:数列
并写出实数
的取值范围;
(3)设数列
且对满足条件②中的实数
的最小值
都有
求证:数列
一定是单调递增数列.






(1)现在给出只有5项的有限数列





(2)数列








(3)设数列





意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列
称为“斐波那契数列”,记
为数列
的前n项和,则下列结论正确的是( )



A.![]() | B.![]() |
C.![]() | D.![]() |