- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- 数列求和
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某企业2015年的纯利润为500万元,因为企业的设备老化等原因,企业的生产能力将逐年下降.若不进行技术改造,预测从2015年开始,此后每年比上一年纯利润减少20万元.如果进行技术改造,2016年初该企业需一次性投入资金600万元,在未扣除技术改造资金的情况下,预计2016年的利润为750万元,此后每年的利润比前一年利润的一半还多250万元.
(1)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的年纯利润为
万元;进行技术改造后,在未扣除技术改造资金的情况下的年利润为
万元,求
和
;
(2)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的累计纯利润为
万元,进行技术改造后的累计纯利润为
万元,求
和
;
(3)依上述预测,从2016年起该企业至少经过多少年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润?
(1)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的年纯利润为




(2)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的累计纯利润为




(3)依上述预测,从2016年起该企业至少经过多少年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润?
已知点
是函数
的图象上一点,等比数列
的前n项和为
,数列
的首项为c,且前n项和
满足:当
时,都有
.
(1)求c的值;
(2)求证:
为等差数列,并求出
.
(3)若数列
前n项和为
,是否存在实数m,使得对于任意的
都有
,若存在,求出m的取值范围,若不存在,说明理由.








(1)求c的值;
(2)求证:


(3)若数列




已知各项为正的数列{an}是等比数列,a1=2,a5=32,数列{bn}满足:对于任意n∈N*,有a1b1+a2b2+…+anbn=(n﹣1)•2n+1+2.
(1)求数列{an}的通项公式;
(2)令f(n)=a2+a4+…+a2n,求
的值;
(3)求数列{bn}通项公式,若在数列{an}的任意相邻两项ak与ak+1之间插入bk(k∈N*)后,得到一个新的数列{cn},求数列{cn}的前100项之和T100.
(1)求数列{an}的通项公式;
(2)令f(n)=a2+a4+…+a2n,求

(3)求数列{bn}通项公式,若在数列{an}的任意相邻两项ak与ak+1之间插入bk(k∈N*)后,得到一个新的数列{cn},求数列{cn}的前100项之和T100.