- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- + 距离测量问题
- 高度测量问题
- 角度测量问题
- 正、余弦定理的其他应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一条河自西向东流淌,某人在河南岸A处看到河北岸两个目标C、D分别在东偏北45°和东偏北60°方向,此人向东走300米到达B处之后,再看C、D,则分别在西偏北75°和西偏北30°方向,求目标C、D之间的距离.

如图,有一段河流,河的一侧是以O为圆心,半径为
米的扇形区域OCD,河的另一侧是一段笔直的河岸l,岸边有一烟囱AB(不计B离河岸的距离),且OB的连线恰好与河岸l垂直,设OB与圆弧
的交点为E.经测量,扇形区域和河岸处于同一水平面,在点C,点O和点E处测得烟囱AB的仰角分别为
,
和
.

(1)求烟囱AB的高度;
(2)如果要在CE间修一条直路,求CE的长.






(1)求烟囱AB的高度;
(2)如果要在CE间修一条直路,求CE的长.
某货轮在A处看灯塔S在北偏东30°,它以每小时36海里的速度向正北方向航行,40分钟航行到B处,看灯塔S在北偏东75°,求这时货轮到灯塔S的距离.
在海岸
处,发现北偏东
方向,距离A为
海里的B处有一艘走私船,在A处北偏西
方向距离
为
海里的
处有我方一艘辑私艇奉命以
海里/小时的速度追截走私船,此时走私船正以
海里/小时的速度从
处向北偏东
方向逃窜,问辑私艇沿什么方向,才能最快追上走私船?需要多长时间?












海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海
里A处,如图. 现假设:①失事船的移动路径可视为抛物线
;②定位后救援船即刻沿直线匀速前往救援;③救援船出发
小时后,失事船所在位置的横坐标为
.
(1)当
时,写出失事船所在位置P的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;
(2)问救援船的时速至少是多少海里才能追上失事船?
里A处,如图. 现假设:①失事船的移动路径可视为抛物线



(1)当

(2)问救援船的时速至少是多少海里才能追上失事船?

如图,在海岸线上相距
千米的A、C两地分别测得小岛B在A的北偏西
方向,在C的北偏西
方向,且
,则BC之间的距离是






A.![]() | B.30千米 | C.![]() | D.12千米 |

2011年3月10日,云南盈江县发生里氏5.8级地震。萧山金利浦地震救援队接到上级命令后立即赶赴震区进行救援。救援队利用生命探测仪在某建筑物废墟下方探测到点 C 处有生命迹象,已知废墟一侧地面上两探测点A、B 相距3米,探测线与地面的夹角分别是30°和 60°(如图),试确定生命所在点 C 的深度。(结果精确到0.1米,参考数据:(

一架飞机从A地飞到B到,两地相距
,飞行员为了避开某一区域的雷雨云层,从机场起飞后,就沿与原来的飞行方向成
角的方向飞行,飞行到中途,再沿与原来的飞行方向成
夹角的方向继续飞行直到终点.这样飞机的飞行路程比原来路程
远了多少?







如图,海中小岛A周围40海里内有暗礁,一船正在向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,问有无触礁的危险?

某巡逻艇在A处发现北偏东45°相距9海里的C处有一艘走私船,正沿南偏东75°的方向以10海里/小时的速度逃窜.
(Ⅰ)若巡逻艇计划在正东方向进行拦截,问巡逻艇应行驶到什么位置进行设卡?
(Ⅱ)若巡逻艇立即以14海里/小时的速度沿着直线方向追击,问经多少时间后巡逻艇恰追赶上该走私船?
(Ⅰ)若巡逻艇计划在正东方向进行拦截,问巡逻艇应行驶到什么位置进行设卡?
(Ⅱ)若巡逻艇立即以14海里/小时的速度沿着直线方向追击,问经多少时间后巡逻艇恰追赶上该走私船?
