- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- + 距离测量问题
- 高度测量问题
- 角度测量问题
- 正、余弦定理的其他应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某沿海四个城市
的位置如图所示,其中
,
,
mile,
mile,
mile,
位于
的北偏东
方向.现在有一艘轮船从
出发向直线航行,一段时间到达
后,轮船收到指令改向城市
直线航行,收到指令时城市
对于轮船的方位角是南偏西
度,则
_________.
















如图所示,为了测量
,
处岛屿的距离,小明在
处观测,
,
分别在
处的北偏西
、北偏东
方向,再往正东方向行驶40海里至
处,观测
在
处的正北方向,
在
处的北偏西
方向,则
,
两处岛屿间的距离为( )


















A.![]() | B.![]() | C.![]() | D.40海里 |
(数学(文)卷·2017届湖南省百所重点中学高三上学期阶段性诊断考试第16题)我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里有一个题目:“问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一个三角形沙田,三边分别为13里,14里,15里,假设1里按500米计算,则该沙田的面积为__________平方千米.
如图,一条巡逻船由南向北行驶,在A处测得山顶P在北偏东15°(∠BAC=15°)方向上,匀速向北航行20分钟到达B处,测得山顶P位于北偏东60°方向上,此时测得山顶P的仰角60°,若山高为2
千米.
(1)船的航行速度是每小时多少千米?
(2)若该船继续航行10分钟到达D处,问此时山顶位于D处的南偏东什么方向?

(1)船的航行速度是每小时多少千米?
(2)若该船继续航行10分钟到达D处,问此时山顶位于D处的南偏东什么方向?

在某海洋军事演习编队中,指挥舰00号与驱逐舰01号、02号的距离一直保持100海里的距离,当驱逐舰01号在指挥舰00号的北偏东15°,02号在00号南偏东45°时,则驱逐舰01号与02号相距为______________ 海里.
如图,一辆汽车从A市出发沿海岸一条笔直公路以
的速度向东匀速行驶,汽车开动时,在A市南偏东方向距A市500km且与海岸距离为300km的海上B处有一艘快艇与汽车同时出发,要把一份文件交给这辆汽车的司机.
(1)快艇至少以多大的速度行驶才能把文件送到司机手中?
(2)求快艇以最小速度行驶时的行驶方向与
所成角的大小.
(3)若快艇每小时最快行驶
,快艇应如何行驶才能尽快把文件交到司机手中?最快需多长时间?

(1)快艇至少以多大的速度行驶才能把文件送到司机手中?
(2)求快艇以最小速度行驶时的行驶方向与

(3)若快艇每小时最快行驶


甲船在湖中
岛的正南
处,
,甲船以
的速度向正北方向航行,同时乙船自
岛出发,以
的速度向北偏东
方向驶去,则行驶
分钟时,两船的距离是( )








A.![]() | B.![]() | C.![]() | D.![]() |
甲船在岛B的正南A处,AB=10km,甲船以每小时4km的速度向正北航行,同时,乙船自B出发以每小时6km的速度向北偏东
的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是()

A.2.15![]() | B.![]() | C.![]() | D.2.15![]() |
如图,某货轮在A处看灯塔B在货轮的北偏东75°,距离为
n mile,在A处看灯塔C在货轮的北偏西30°,距离为
n mile,货轮由A处向正北航行到D处时,再看灯塔B在北偏东120°,则
(1)A处与D处之间的距离为______________ n mile;
(2)灯塔C与D处之间的距离为______________ n mile.


(1)A处与D处之间的距离为
(2)灯塔C与D处之间的距离为
