- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- + 距离测量问题
- 高度测量问题
- 角度测量问题
- 正、余弦定理的其他应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,为了测量河对岸
两点之间的距离.观察者找到了一个点
,从
可以观察到点
;找到了一个点
,从
可以观察到点
;找到了一个点
,从
可以观察到点
.并测量得到图中一些数据,其中
,
,
,
,
,
,则
_____.


















甲船在A处、乙船在甲船正南方向距甲船20海里的B处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A处向南偏西60o方向行驶,问经过多少小时后,甲、乙两船相距最近?

如图,两条公路AP与AQ夹角A为钝角,其正弦值是
.甲乙两人从A点出发沿着两条公路进行搜救工作,甲沿着公路AP方向,乙沿着公路AQ方向.

(1)当甲前进5km的时候到达P处,同时
乙到达Q处,通讯测得甲乙两人相距
k
m,求乙在此时前进的距离AQ;
(2)甲在5公里处原地未动,乙回头往A方向行走至M点收到甲发出的信号,此时M点看P、Q两点的张角为
(张角为
QMP)
,求甲乙两人相距的距离MP的长.



(1)当甲前进5km的时候到达P处,同时




(2)甲在5公里处原地未动,乙回头往A方向行走至M点收到甲发出的信号,此时M点看P、Q两点的张角为



甲乙共同拥有一块形状为等腰三角形的地ABC,其中
.如果画一条线使两块地面积相等,其中两端点P、Q分别在线段AB,AC上.
(1)如果建一条篱笆墙,如何划线建墙费用最低?
(2)如果在PQ线上种树,如何划线种树最多?

(1)如果建一条篱笆墙,如何划线建墙费用最低?
(2)如果在PQ线上种树,如何划线种树最多?
据气象部门预报,在距离某码头南偏东
方向600km处的热带风暴中心,正以每小时20km的速度向正北方向移动,距风暴中心450km以内的地区都将受到影响,从现在起多长时间后,该码头将受到热带风暴中心的影响,影响多长时间?(精确到0.1h)


一蜘蛛沿东北方向爬行x cm捕捉到一只小虫,然后向右转105°,爬行10 cm捕捉到另一只小虫,这时它向右转135°爬行可回到它的出发点,那么
_____________ cm.

如图,为了计算北江岸边两景点
与
的距离,由于地形的限制,需要在岸上选取
和
两个测量点,现测得
,
,
,
,
,求两景点
与
的距离(假设
在同一平面内,测量结果保留整数;参考数据:
)














本小题满分12分)如图,在铁路建设中需要确定隧道的长度和隧道两端的施工方向.已测得隧道两端的两点A、B到某一点C的距离
及
ACB=
,求A、B两点间的距离,以及
ABC、
BA





A.![]() |
(13分)如图,当甲船位于
处时获悉,在其正东方向相距20海里的
处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30
,相距10海里
处的乙船.

(Ⅰ)求处于
处的乙船和遇险渔船间的距离;
(Ⅱ)设乙船沿直线
方向前往
处救援,其方向与
成
角,求
的值域.





(Ⅰ)求处于

(Ⅱ)设乙船沿直线






某人沿一条折线段组成的小路前进,从
到
,方位角(从正北方向顺时针转到
方向所成的角)是
,距离是3km;从
到
,方位角是110°,距离是3km;从
到
,方位角是140°,距离是(
)km.试画出大致示意图,并计算出从A到D的方位角和距离(结果保留根号).








