- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- + 距离测量问题
- 高度测量问题
- 角度测量问题
- 正、余弦定理的其他应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,某城市有一条公路从正西方
通过市中心
后转向东偏北
角方向的
.位于该市的某大学
与市中心
的距离
,且
.现要修筑一条铁路L,L在OA上设一站
,在OB上设一站B,铁路在
部分为直线段,且经过大学
.其中
,
,
.

(1)求大学
与站
的距离
;
(2)求铁路
段的长
.















(1)求大学



(2)求铁路


如图:正在海上A处执行任务的渔政船甲和在B处执行任务的渔政船乙,同时收到同一片海域上一艘渔船丙的求救信号,此时渔船丙在渔政船甲的南偏东40°方向距渔政船甲70km的C处,渔政船乙在渔政船甲的南偏西20°方向的B处,两艘渔政船协调后立即让渔政船甲向渔船丙所在的位置C处沿直线AC航行前去救援,渔政船乙仍留在B处执行任务,渔政船甲航行30km到达D处时,收到新的指令另有重要任务必须执行,于是立即通知在B处执行任务的渔政船乙前去救援渔船丙(渔政船乙沿直线BC航行前去救援渔船丙),此时B、D两处相距42km,问渔政船乙要航行多少距离才能到达渔船丙所在的位置C处实施营救.

某船在A处看灯塔S在北偏东
方向,它以每小时30海里的速度向正北方向航行,经过40分钟航行到B处,看灯塔S在北偏东
方向,则此时该船到灯塔S的距离约为 海里(精确到0.01海里).


如图,A,B,C是三个汽车站,AC,BE是直线型公路.已知AB=120 km,∠BAC=75°,∠ABC=45°.有一辆车(称甲车)以每小时96(km)的速度往返于车站A,C之间,到达车站后停留10分钟;另有一辆车(称乙车)以每小时120(km)的速度从车站B开往另一个城市E,途经车站C,并在车站C也停留10分钟.已知早上8点时甲车从车站A乙车从车站B同时开出.
(1)计算A,C两站距离,及B,C两站距离;
(2)若甲、乙两车上各有一名旅客需要交换到对方汽车上,问能否在车站C处利用停留时间交换;
(3)求10点时甲、乙两车的距离.(可能用到的参考数据:
,
,
,
)
(1)计算A,C两站距离,及B,C两站距离;
(2)若甲、乙两车上各有一名旅客需要交换到对方汽车上,问能否在车站C处利用停留时间交换;
(3)求10点时甲、乙两车的距离.(可能用到的参考数据:





如图已知
是一条直路上的三点,
,
,从三点分别遥望塔
,在
处看见塔在北偏东
,在
处看见塔在正东方向,在
处看见塔在南偏东
,求塔
到直路
的最短距离.












如图所示,巡逻艇在A处测得某走私船在东偏南
方向距A处9海里的B处,正向南偏西
方向行驶,速度为20海里/小时,如果巡逻艇以航速28海里/小时,则应在什么方向用多少时间才能追上这艘走私艇?(
)




在2008年北京奥运会青岛奥帆赛举行之前,为确保赛事安全,青岛海事部门举行奥运安保海上安全演习.为了测量正在海面匀速行驶的某航船的速度,在海岸上选取距离为1千米的两个观察点C,D,在某天
观察到该航船在A处,此时测得
,3分钟后该船行驶至B处,此时测得
,
,求船的速度是多少千米/分钟.





如图,在某港口
处获悉,其正东方向距离20nmile的
处有一艘渔船遇险等待营救,此时救援船在港口的南偏西30°距港口10nmile的C处,救援船接到救援命令立即从C处沿直线前往B处营救渔船.

(1)求接到救援命令时救援船距渔船的距离;
(2)试问救援船在C处应朝北偏东多少度的方向沿直线前往B处救援?(已知cos 49°=
)



(1)求接到救援命令时救援船距渔船的距离;
(2)试问救援船在C处应朝北偏东多少度的方向沿直线前往B处救援?(已知cos 49°=
