- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 几何中的三角函数模型
- + 三角函数在生活中的应用
- 三角函数在物理学中的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某单位在抗雪救灾中,需要在A,B两地之间架设高压电线,测量人员在相距6km的C,D两地测得∠ACD=45°,∠ADC=75°,∠BDC=15°,∠BCD=30°(如图所示,其中A,B,C,D在同一平面上),假如考虑到电线的自然下垂和施工损耗等原因,实际所须电线长度大约应该是A,B之间距离的1.2倍,问施工单位至少应该准备多长的电线?
(精确到小数点后1位;参考数据:
)
(精确到小数点后1位;参考数据:


如图所示,一科学考察船从港口
出发,沿北偏东
角的射线
方向航行,而在离港口
(
为正常数)海里的北偏东
角的
处有一个供给科考船物资的小岛,其中
,现指挥部需要紧急征调沿海岸线港口
正东
已知
,海里
处的补给船,速往小岛
装运物资供给科考船,该船
方向全速追赶科考船,并在
处相遇.经测算当两船运行的航向与海岸线
围成的三角形
的面积最时,这种补给最宜.
⑴ 求
关于
的函数关系
;
⑵ 应征调
为何值处的船只,补给最适宜.

















⑴ 求



⑵ 应征调


水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为
的水车,一个水斗从点
出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒.经过
秒后,水斗旋转到
点,设
的坐标为
,其纵坐标满足
.则下列叙述错误的是( ).










A.![]() | B.当![]() ![]() ![]() |
C.当![]() ![]() | D.当![]() ![]() |
如图为一半径为3m的水轮,水轮圆心O距离水面2 m,已知水轮每分钟旋转4圈,水轮上的点P到水面的距离y(m)与时间x(s)满足函数关系y=Asin(ωx+φ)+2,则有()


A.ω=![]() | B.ω=![]() |
C.ω=![]() | D.ω=![]() |
如图,开发商欲对边长为
的正方形
地段进行市场开发,拟在该地段的一角建设一个景观,需要建一条道路
(点
分别在
上),根据规划要求
的周长为
.

(1)设
,试求
的大小;
(2)欲使
的面积最小,试确定点
的位置.








(1)设


(2)欲使


某校一个校园景观的主题为“托起明天的太阳”,其主体是一个半径为5米的球体,需设计一个透明的支撑物将其托起,该支撑物为等边圆柱形的侧面,厚度忽略不计.轴截面如图所示,设
.(注:底面直径和高相等的圆柱叫做等边圆柱.)
(1)用
表示圆柱的高;
(2)实践表明,当球心O和圆柱底面圆周上的点D的距离达到最大时,景观的观赏效果最佳,试求出OD最大值,并求出此时
的值.

(1)用

(2)实践表明,当球心O和圆柱底面圆周上的点D的距离达到最大时,景观的观赏效果最佳,试求出OD最大值,并求出此时


为了培养学生的数学建模和应用能力,某校组织了一次实地测量活动,如图,假设待测量的树木
的高度
,垂直放置的标杆
的高度
,仰角
三点共线),试根据上述测量方案,回答如下问题:
(1)若测得
,试求
的值;
(2)经过分析若干测得的数据后,大家一致认为适当调整标杆到树木的距离
(单位:)使
与
之差较大时,可以提高测量的精确度.若树木的实际高为
,试问
为多少时,
最大?





(1)若测得


(2)经过分析若干测得的数据后,大家一致认为适当调整标杆到树木的距离







在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南
方向300km的海面P处,并以20km/h的速度向西偏北
方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭?



某商场在一部向下运行的手扶电梯终点的正上方竖直悬挂一幅广告画.如图,该电梯的高
为
米,它所占水平地面的长
为
米.该广告画最高点
到地面的距离为
米,最低点
到地面距离
米.假设某人眼睛到脚底的距离
为
米,他竖直站在此电梯上观看
视角为
.
(Ⅰ)设此人到直线
的距离为
米,试用含
的表达式表示
;
(Ⅱ)此人到直线
的距离为多少米时,视角
最大?












(Ⅰ)设此人到直线




(Ⅱ)此人到直线


