- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 几何中的三角函数模型
- + 三角函数在生活中的应用
- 三角函数在物理学中的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
将边长为
的正三角形
按如图所示的方式放置,其中顶点
与坐标原点重合.记
,已知
.

(Ⅰ)试用
表示
的坐标(要求将结果化简为形如
的形式);
(Ⅱ)对于直角坐标平面内的任意两点
、
,定义
,试求
的最大值.






(Ⅰ)试用



(Ⅱ)对于直角坐标平面内的任意两点




如图,
三个警亭有直道相通,已知
在
的正北方向6千米处,
在
的正东方向
千米处.
(1)警员甲从
出发,沿
行至点
处,此时
,求
的距离;
(2)警员甲从
出发沿
前往
,警员乙从
出发沿
前往
,两人同时出发,甲的速度为3千米/小时,乙的速度为6千米/小时.两人通过专用对讲机保持联系,乙到达
后原地等待,直到甲到达
时任务结束.若对讲机的有效通话距离不超过9千米,试问两人通过对讲机能保持联系的总时长?






(1)警员甲从





(2)警员甲从









平潭国际“花式风筝冲浪”集训队,在平潭龙凤头海滨浴场进行集训,海滨区域的某个观测点观测到该处水深
(米)是随着一天的时间
(
,单位小时)呈周期性变化,某天各时刻
的水深数据的近似值如下表:

(1)根据表中近似数据画出散点图(坐标系在答题卷中),观察散点图,选择一个合适的函数模型,并求 出该拟合模型的函数解析式;
(2)为保证队员安全,规定在一天中的
时且水深不低于1.05米的时候进行训练,根据(1)中的选择的函数解析式,试问:这一天可以安排什么时间段组织训练,才能确保集训队员的安全.





(1)根据表中近似数据画出散点图(坐标系在答题卷中),观察散点图,选择一个合适的函数模型,并求 出该拟合模型的函数解析式;
(2)为保证队员安全,规定在一天中的

如图,某机械厂欲从
米,
米的矩形铁皮中裁剪出一个四边形
加工成某仪器的零件,裁剪要求如下:点
分别在边
上,且
,
.设
,四边形
的面积为
(单位:平方米).

(1)求
关于
的函数关系式,求出定义域;
(2)当
的长为何值时,裁剪出的四边形
的面积最小,并求出最小值.











(1)求


(2)当


某实验室白天的温度
(单位:
)随时间
(单位:
)的变化近似满足函数关系:
,
.
(1)求实验室白天的最大温差;
(2)若要求实验室温差不高于
,则在哪段时间实验室需要降温?






(1)求实验室白天的最大温差;
(2)若要求实验室温差不高于

如图,OA,OB为扇形湖面OAB的湖岸,现欲利用渔网和湖岸在湖中隔出两个养殖区
区域I和区域Ⅱ,点C在
上,
,
,其中
,半径OC及线段CD需要用渔网制成
若
,
,则所需渔网的最大长度为______.









为丰富农村业余文化生活,决定在A,B,N三个村子的中间地带建造文化中心.通过测量,发现三个村子分别位于矩形ABCD的两个顶点A,B和以边AB的中心M为圆心,以MC长为半径的圆弧的中心N处,且AB=8km,BC=
km.经协商,文化服务中心拟建在与A,B等距离的O处,并建造三条道路AO,BO,NO与各村通达.若道路建设成本AO,BO段为每公里
万元,NO段为每公里a万元,建设总费用为
万元.

(1)若三条道路建设的费用相同,求该文化中心离N村的距离;
(2)若建设总费用最少,求该文化中心离N村的距离.




(1)若三条道路建设的费用相同,求该文化中心离N村的距离;
(2)若建设总费用最少,求该文化中心离N村的距离.
一半径为4m的水轮(如图),水轮圆心O距离水面2m,已知水轮每分钟转动4圈,如果当水轮上点P从水中浮现时(图中点P0)开始计时.

(1)将点P距离水面的高度h(m)表示为时间t(s)的函数;
(2)在水轮转动的一圈内,有多长时间点P距水面的高度超过4m.

(1)将点P距离水面的高度h(m)表示为时间t(s)的函数;
(2)在水轮转动的一圈内,有多长时间点P距水面的高度超过4m.