- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 几何中的三角函数模型
- + 三角函数在生活中的应用
- 三角函数在物理学中的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,为测量一座山的高度,某勘测队在水平方向的观察点A,B测得山顶的仰角分别为α,β,且该两点间的距离是l米,则此山的竖直高度h为__________ 米(用含α,β,l的式子表达).

如图,
、
是两个小区所在地,
、
到一条公路
的垂直距离分别为
,
,
两端之间的距离为
.
(1)某移动公司将在
之间找一点
,在
处建造一个信号塔,使得
对
、
的张角与
对
、
的张角相等,试确定点
的位置.
(2)环保部门将在
之间找一点
,在
处建造一个垃圾处理厂,使得
对
、
所张角最大,试确定点
的位置.












(1)某移动公司将在










(2)环保部门将在








国庆节期间一游客在东湖的游船上仰看空中一飞艇,仰角为15°,又俯看飞艇在湖中的映影,俯角为45°,已知该游客在船上距湖面的高度为5 m,求飞艇距湖面的高度(不考虑水的折射).
某旅游区每年各个月份接待游客的人数近似地满足周期性规律,因而第
个月从事旅游服务工作的人数
可近似地用函数
来刻画,其中正整数
表示月份且
,例如
表示1月份,
和
是正整数,
,
. 统计发现,该地区每年各个月份从事旅游服务工作的人数有以下规律:
① 每年相同的月份,该地区从事旅游服务工作的人数基本相同;
② 该地区从事旅游服务工作的人数最多的8月份和最少的2月份相差400人;
③ 2月份该地区从事旅游服务工作的人数为100人,随后逐月递增直到8月份达到最多.
(1)试根据已知信息,求
的表达式;
(2)一般地,当该地区从事旅游服务工作的人数在400或400以上时,该地区也进入了一年中的旅游“旺季”,那么,一年中的哪几个月是该地区的旅游“旺季”?请说明理由.










① 每年相同的月份,该地区从事旅游服务工作的人数基本相同;
② 该地区从事旅游服务工作的人数最多的8月份和最少的2月份相差400人;
③ 2月份该地区从事旅游服务工作的人数为100人,随后逐月递增直到8月份达到最多.
(1)试根据已知信息,求

(2)一般地,当该地区从事旅游服务工作的人数在400或400以上时,该地区也进入了一年中的旅游“旺季”,那么,一年中的哪几个月是该地区的旅游“旺季”?请说明理由.
如图,有一块等腰直角三角形的草坪
,其中
,根据实际需要,要扩大此草坪的规模,在线段
上选取一点
,使四边形
为平行四边形.为方便游客参观,现将铺设三条观光道路
,设
.

(1)用
表示出道路
的长度;
(2)当点
距离点
多远时,三条观光道路的总长度最小?








(1)用


(2)当点


轮船A从某港口C将一些物品送到正航行的轮船B上,在轮船A出发时,轮船B位于港口C北偏西
且与C相距20海里的P处,并正以30海里的航速沿正东方向匀速行驶,假设轮船A沿直线方向以v海里/小时的航速匀速行驶,经过t小时与轮船B相遇,若使相遇时轮船A航距最短,则轮船A的航行速度大小应为多少?

如图,在P地正西方向8km的A处和正东方向1km的B处各有一条正北方向的公路AC和BD,现计划在AC和BD路边各修建一个物流中心E和F,为缓解交通压力,决定修建两条互相垂直的公路PE和PF,设

Ⅰ
为减少对周边区域的影响,试确定E,F的位置,使
与
的面积之和最小;
Ⅱ
为节省建设成本,求使
的值最小时AE和BF的值.









如图,郊外有一边长为200m的菱形池塘ABCD,塘边AB与AD的夹角为60°,拟架设三条网隔BE,BF,EF,把池塘分成几个不同区域,其中网隔BE与BF相互垂直,E,F两点分别在塘边AD和DC上,区域BEF为荷花种植区域.记∠ABE=
,荷花种植区域的面积为Sm2.


(1)求S关于的函数关系式;
(2)求S的最小值.
