- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 几何中的三角函数模型
- + 三角函数在生活中的应用
- 三角函数在物理学中的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为迎接夏季旅游旺季的到来,少林寺单独设置了一个专门安排游客住宿的客栈,寺庙的工作人员发现为游客准备的一些食物有些月份剩余不少,浪费很严重,为了控制经营成本,减少浪费,就想适时调整投入.为此他们统计每个月入住的游客人数,发现每年各个月份来客栈入住的游客人数会发生周期性的变化,并且有以下规律:
①每年相同的月份,入住客栈的游客人数基本相同;
②入住客栈的游客人数在2月份最少,在8月份最多,相差约400人;
③2月份入住客栈的游客约为100人,随后逐月递增直到8月份达到最多.
(1)试用一个正弦型三角函数
描述一年中入住客栈的游客人数y与月x份之间的关系;
(2)请问哪几个月份要准备400份以上的食物?
①每年相同的月份,入住客栈的游客人数基本相同;
②入住客栈的游客人数在2月份最少,在8月份最多,相差约400人;
③2月份入住客栈的游客约为100人,随后逐月递增直到8月份达到最多.
(1)试用一个正弦型三角函数

(2)请问哪几个月份要准备400份以上的食物?
筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,如左下图.假定在水流量稳定的情况下,半径为3m的筒车上的每一个盛水桶都按逆时针方向作角速度为
rad/min的匀速圆周运动,平面示意图如右下图,己知筒车中心O到水面BC的距离为2m,初始时刻其中一个盛水筒位于点P0处,且∠P0OA=
(OA//BC),则8min后该盛水筒到水面的距离为____m.



为做好达州市渠江航道升级的前期工作,四川省交通运输厅交通勘察设计院组织专家到渠江现场踏勘,现要测量渠江某处
,
两岸的距离,如图,在
的正东方向选取一点
测得
,
位于
西偏北
,
位于
北偏东
,则
的距离=( )














A.![]() | B.![]() | C.![]() | D.![]() |
如图,某住宅小区的平面图呈圆心角
为的扇形
,小区的两个出入口设置在点
及点
处,且小区里有一条平行于
的小路
.

(1)已知某人从
沿
走到
用了
分钟,从
沿
走到
用了
分钟,若此人步行的速度为每分钟
米,求该扇形的半径
的长(精确到
米)
(2)若该扇形的半径为
,已知某老人散步,从
沿
走到
,再从
沿
走到
,试确定
的位置,使老人散步路线最长.







(1)已知某人从











(2)若该扇形的半径为








如图,货轮在海上以
的速度沿着方位角(从指北方向顺时针转到目标方向线的水平角)为150°的方向航行.为了确定船位,在点B观察灯塔A的方位角是120°,航行半小时后到达C点,观察灯塔A的方位角是75°,则货轮到达C点时与灯塔A的距离为______ n mile


如图,某小区有一块半径为
米的半圆形空地,开发商计划在该空地上征地建一个矩形的花坛
和一个等腰三角形的水池EDC,其中
为圆心,
在圆的直径上,
在半圆周上.

(1)设
,征地面积为
,求
的表达式,并写出定义域;
(2)当
满足
取得最大值时,建造效果最美观.试求
的最大值,以及相应角
的值.






(1)设



(2)当




如图,OA,OB是两条互相垂直的笔直公路,半径OA=2km的扇形AOB是某地的一名胜古迹区域.当地政府为了缓解该古迹周围的交通压力,欲在圆弧AB上新增一个入口P(点P不与A,B重合),并新建两条都与圆弧AB相切的笔直公路MB,MN,切点分别是B,P.当新建的两条公路总长最小时,投资费用最低.设∠POA=
,公路MB,MN的总长为
.

(1)求
关于
的函数关系式,并写出函数的定义域;
(2)当
为何值时,投资费用最低?并求出
的最小值.



(1)求


(2)当


为丰富市民的文化生活,市政府计划在一块半径为200m,圆心角为
的扇形地上建造市民广场,规划设计如图:内接梯形
区域为运动休闲区,其中A,B分别在半径
,
上,C,D在圆弧
上,

;上,
;
区域为文化展区,
长为
,其余空地为绿化区域,且
长不得超过200m.
(1)试确定A,B的位置,使
的周长最大?
(2)当
的周长最长时,设
,试将运动休闲区
的面积S表示为
的函数,并求出S的最大值.












(1)试确定A,B的位置,使

(2)当




我国古代数学家刘徽于公元263年在《九章算术注》中提出“割圆术”:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣。即通过圆内接正多边形细割圆,并使正多边形的面积无限接近圆的面积,进而来求得较为精确的圆周率。如果用圆的内接正
边形逼近圆,算得圆周率的近似值记为
,那么
_______。



某市某房地产介绍所对本市一楼盘的房价作了统计与预测:发现每个季度的平均单价
(单位:元/平方米)与第
季度之间近似满足关系式:
.已知第一、二季度的平均单价如下表所示:
则此楼盘在第三季度的平均单价大约是( )



![]() | 一 | 二 |
![]() | ![]() | ![]() |
则此楼盘在第三季度的平均单价大约是( )
A.![]() | B.![]() | C.![]() | D.![]() |