如图,已知AB是一幢6层的写字楼,每层高均为3m,在AB正前方36m处有一建筑物CD,从楼顶A处测得建筑物CD的张角为
求建筑物CD的高度;
一摄影爱好者欲在写字楼AB的某层拍摄建筑物已知从摄影位置看景物所成张角最大时,拍摄效果最佳问:该摄影爱好者在第几层拍摄可取得最佳效果不计人的高度
当前题号:1 | 题型:解答题 | 难度:0.99
车流量被定义为单位时间内通过十字路口的车辆数,单位为辆/分,上班高峰期某十字路口的车流量由函数F(t)=50+4sin(其中0≤t≤20)给出,F(t)的单位是辆/分,t的单位是分,则在下列哪个时间段内车流量是增加的()
A.[0,5]B.[5,10]C.[10,15]D.[15,20]
当前题号:2 | 题型:单选题 | 难度:0.99
设有三个乡镇,分别位于一个矩形的两个顶点MN的中点S处,,现要在该矩形的区域内(含边界),且与MN等距离的一点O处设一个宣讲站,记O点到三个乡镇的距离之和为
(1)设,试将L表示为x的函数并写出其定义域;
(2)试利用(1)的函数关系式确定宣讲站O的位置,使宣讲站O到三个乡镇的距离之和最小.
当前题号:3 | 题型:解答题 | 难度:0.99
“剑桥学派”创始人之一数学家哈代说过:“数学家的造型,同画家和诗人一样,也应当是美丽的”;古希腊数学家毕达哥拉斯创造的“黄金分割”给我们的生活处处带来美;我国古代数学家赵爽创造了优美“弦图”.“弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为,则等于(   )
A.B.C.D.
当前题号:4 | 题型:单选题 | 难度:0.99
如图,某港口一天中6时到18时的水深变化曲线近似满足函数,据此可知,这段时间水深(单位:m)的最大值为(   )
 
A.5B.6C.8D.10
当前题号:5 | 题型:单选题 | 难度:0.99
如图,摩天轮的半径为40m,其中心点距离地面的高度为50m,摩天轮按逆时针方向做匀速转动,且20min转一圈,若摩天轮上点的起始位置在最高点处,则摩天轮转动过程中(   )
A.经过10min点距离地面10m
B.若摩天轮转速减半,则其周期变为原来的
C.第17min和第43min时点距离地面的高度相同
D.摩天轮转动一圈,点距离地面的高度不低于70m的时间为min
当前题号:6 | 题型:多选题 | 难度:0.99
如图,某城市设立以城中心为圆心、公里为半径的圆形保护区,从保护区边缘起,在城中心正东方向上有一条高速公路、西南方向上有一条一级公路,现要在保护区边缘PQ弧上选择一点A作为出口,建一条连接两条公路且与圆相切的直道.已知通往一级公路的道路每公里造价为万元,通往高速公路的道路每公里造价是万元,其中为常数,设,总造价为万元.

(1)把表示成的函数,并求出定义域;
(2)当时,如何确定A点的位置才能使得总造价最低?
当前题号:7 | 题型:解答题 | 难度:0.99
如图,某城市中心花园的边界是圆心为O,直径为1千米的圆,花园一侧有一条直线型公路l,花园中间有一条公路AB(AB是圆O的直径),规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA.规划要求:道路PB,QA不穿过花园.已知,(CD为垂足),测得OC=0.9,BD=1.2(单位:千米).已知修建道路费用为m元/千米.在规划要求下,修建道路总费用的最小值为_____元.
当前题号:8 | 题型:填空题 | 难度:0.99
如题所示:扇形ABC是一块半径为2千米,圆心角为60°的风景区,P点在弧BC上,现欲在风景区中规划三条三条商业街道PQ、QR、RP,要求街道PQ与AB垂直,街道PR与AC垂直,直线PQ表示第三条街道.

(1)如果P位于弧BC的中点,求三条街道的总长度;
(2)由于环境的原因,三条街道PQ、PR、QR每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)
当前题号:9 | 题型:解答题 | 难度:0.99
如图,射线均为笔直的公路,扇形区域(含边界)是一蔬菜种植园,其中分别在射线上.经测量得,扇形的圆心角(即、半径为1千米.为了方便菜农经营,打算在扇形区域外修建一条公路,分别与射线交于两点,并要求与扇形弧相切于点.设(单位:弧度),假设所有公路的宽度均忽略不计.

(1)试将公路的长度表示为的函数,并写出的取值范围:
(2)试确定的值,使得公路的长度最小,并求出其最小值.
当前题号:10 | 题型:解答题 | 难度:0.99