如图,某游乐场有一个半径为50米的摩天轮,该摩天轮的圆心距离地面52米,摩天轮逆时针匀速转动,每转动一圈需要分钟.若游客从最低点处登上摩天轮,从摩天轮开始转动计时.

(I)求游客与地面的距离(米)与摩天轮转动时间(分)的函数关系式;
(Ⅱ)摩天轮转动一圈的过程中,游客的高度在距地面77米及以上的时间不少于4分钟,求的最小值.
当前题号:1 | 题型:解答题 | 难度:0.99
一半径为的水轮如图所示,水轮圆心距离水面;已知水轮按逆时针做匀速转动,每转一圈,如果当水轮上点从水中浮现时(图中点)开始计算时间.

(1)以水轮所在平面与水面的交线为轴,以过点且与水面垂直的直线为轴,建立如图所示的直角坐标系,将点距离水面的高度表示为时间的函数;
(2)点第一次到达最高点大约要多长时间?
当前题号:2 | 题型:解答题 | 难度:0.99
据监测,在海滨某城市附近的海面有一台风. 台风中心位于城市的东偏南方向、距离城市的海面处,并以的速度向西偏北方向移动(如图示).如果台风侵袭范围为圆形区域,半径,台风移动的方向与速度不变,那么该城市受台风侵袭的时长为_____ .
当前题号:3 | 题型:填空题 | 难度:0.99
水车是一种利用水流动力进行灌溉的工具,是人类一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个水车的示意图,已知水车逆时针匀速旋转一圈的时间是80秒,半径为3米,水车中心(即圆心)距水面1.5米.若以水面为轴,圆心到水面的垂线为轴建立直角坐标系,水车的一个水斗从出水面点处开始计时,经过秒后转到点的位置,则点到水面的距离与时间的函数关系式为(   )
A.B.
C.D.
当前题号:4 | 题型:单选题 | 难度:0.99
如图,有一块扇形草地OMN,已知半径为R,,现要在其中圈出一块矩形场地ABCD作为儿童乐园使用,其中点A、B在弧MN上,且线段AB平行于线段MN

(1)若点A为弧MN的一个三等分点,求矩形ABCD的面积S;
(2)当A在何处时,矩形ABCD的面积S最大?最大值为多少?
当前题号:5 | 题型:解答题 | 难度:0.99
节能环保日益受到人们的重视,水污染治理也已成为“十三五”规划的重要议题.某地有三家工厂,分别位于矩形的两个顶点的中点处,,为了处理三家工厂的污水,现要在该矩形区域上(含边界),且与等距离的一点处,建造一个污水处理厂,并铺设三条排污管道.设BAO=x(弧度),排污管道的总长度为

(1)将表示为的函数;
(2)试确定点的位置,使铺设的排污管道的总长度最短,并求总长度的最短公里数(精确到).
当前题号:6 | 题型:解答题 | 难度:0.99
某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a,短轴长为2b的椭圆,已知岛上甲、乙导航灯的海拔高度分别为h1h2,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上,现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为θ1、θ2,那么船只已进入该浅水区的判别条件是    .
当前题号:7 | 题型:填空题 | 难度:0.99
根据市气象站对春季某一天气温变化的数据统计显示,气温变化的分布可以用曲线拟合(,单位为小时,表示气温,单位为摄氏度,,现已知这天气温为4至12摄氏度,并得知在凌晨1时整气温最低,下午13时整气温最高.
(1)求这条曲线的函数表达式;
(2)求这一天19时整的气温.
当前题号:8 | 题型:解答题 | 难度:0.99
下图为2018年某市某天6时至14时的温度变化曲线,其近似满足函数的半个周期的图象,则该天8时的温度大约为_______.
当前题号:9 | 题型:填空题 | 难度:0.99
某帆板集训队在一海滨区域进行集训,该海滨区域的海浪高度y(米)随着时间(,单位:时)呈周期性变化,每天时刻t的浪高数据的平均值如下表:
t(时)
0
3
6
9
12
15
18
21
24
y(米)
1.0
1.4
1.0
0.6
1.0
1.4
0.9
0.5
1.0
 
(1)作散点图.
(2)从,,中选一个合适的函数模型,并求出该模型的解析式.
(3)如果确定在一天内的7时到19时之间,当浪高不低于0.8米时才进行训练,试安排恰当的训练时间.
当前题号:10 | 题型:解答题 | 难度:0.99