- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 几何中的三角函数模型
- + 三角函数在生活中的应用
- 三角函数在物理学中的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图是某市夏季某一天的温度变化曲线,若该曲线近似地满足函数
,则下列说法正确的是( )



A.该函数的周期是16 |
B.该函数图象的一条对称轴是直线![]() |
C.该函数的解析式是![]() |
D.这一天的函数关系式也适用于第二天 |
E.该市这一天中午12时天气的温度大约是27℃ |
下表是某地某年月平均气温(华氏度):
以月份为x轴(
月份
),以平均气温为y轴.
(1)用正弦曲线去拟合这些数据;
(2)估计这个正弦曲线的周期T和振幅A;
(3)下面三个函数模型中,哪一个最适合这些数据?
①
;②
;③
.
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
平均气温 | 21.4 | 26.0 | 36.0 | 48.8 | 59.1 | 68.6 | 73.0 | 71.9 | 64.7 | 53.5 | 39.8 | 27.7 |
以月份为x轴(


(1)用正弦曲线去拟合这些数据;
(2)估计这个正弦曲线的周期T和振幅A;
(3)下面三个函数模型中,哪一个最适合这些数据?
①



下表中给出了在24小时期间人的体温的变化(从夜间零点开始计时):
(1)作出这些数据的散点图;
(2)选用一个三角函数来近似描述这些数据.
时间(时) | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
温度(℃) | 36.8 | 36.7 | 36.6 | 36.7 | 36.8 | 37 | 37.2 | 37.3 | 37.4 | 37.3 | 37.2 | 37 | 36.8 |
(1)作出这些数据的散点图;
(2)选用一个三角函数来近似描述这些数据.
海水受日月的引力在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下表是某港口某天的时刻与水深关系的预报.
(1)选用一个函数来近似描述这一天该港口的水深与时间的关系,给出整点时水深的近似数值(精确到0.001 m).
(2)一条货船的吃水深度(船底与水面的距离)为4 m,安全条例规定至少要有1.5 m的安全间隙(船底与洋底的距离),该船这一天何时能进入港口?在港口能呆多久?
(3)某船的吃水深度为4 m,安全间隙为1.5 m该船这一天在2:00开始卸货,吃水深度以0.3 m/h的速度减少,如果这条船停止卸货后需0.4 h才能驶到深水域,那么该船最好在什么时间停止卸货,将船驶向较深的水域?
时刻 | 水深/m | 时刻 | 水深/m | 时刻 | 水深/m |
0:00 | 5.0 | 9:18 | 2.5 | 18:36 | 5.0 |
3:06 | 7.5 | 12:24 | 5.0 | 21:42 | 2.5 |
6:12 | 5.0 | 15:30 | 7.5 | 24:00 | 4.0 |
(1)选用一个函数来近似描述这一天该港口的水深与时间的关系,给出整点时水深的近似数值(精确到0.001 m).
(2)一条货船的吃水深度(船底与水面的距离)为4 m,安全条例规定至少要有1.5 m的安全间隙(船底与洋底的距离),该船这一天何时能进入港口?在港口能呆多久?
(3)某船的吃水深度为4 m,安全间隙为1.5 m该船这一天在2:00开始卸货,吃水深度以0.3 m/h的速度减少,如果这条船停止卸货后需0.4 h才能驶到深水域,那么该船最好在什么时间停止卸货,将船驶向较深的水域?
下表是某地1988~2019年的月平均气温(华氏度).
以月份为
轴,令
月份
,以平均气温为
轴.
(1)描出散点图.
(2)用正弦型曲线去拟合这些数据.
(3)第(2)问中所求得正弦型曲线对应的函数的周期
是多少?
(4)估计这个正弦型曲线的振幅
.
(5)下面四个函数模型中哪一个最适合这些数据?
①
;②
;③
;④
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
平均气温 | 21.4 | 26.0 | 36.0 | 48.8 | 59.1 | 68.6 |
月份 | 7 | 8 | 9 | 10 | 11 | 12 |
平均气温 | 73.0 | 71.9 | 64.7 | 53.5 | 39.8 | 27.7 |
以月份为




(1)描出散点图.
(2)用正弦型曲线去拟合这些数据.
(3)第(2)问中所求得正弦型曲线对应的函数的周期

(4)估计这个正弦型曲线的振幅

(5)下面四个函数模型中哪一个最适合这些数据?
①




如图,某地一天从3~15时的温度变化曲线近似满足函数
,其中
.(参考数据:
)

(1)求这段曲线的函数解析式;
(2)计算这天10时的温度是多少.




(1)求这段曲线的函数解析式;
(2)计算这天10时的温度是多少.
当我们所处的北半球为冬季的时候,新西兰的惠灵顿市恰好是盛夏,因此北半球的人们冬天愿意去那里旅游,下面是一份惠灵顿机场提供的月平均气温统计表.
(1)根据这个统计表提供的数据,为惠灵顿市的月平均气温作出一个函数模型;
(2)当自然气温不低于13.7℃时,惠灵顿市最适宜旅游,试根据你所确定的函数模型,确定惠灵顿市的最佳旅游时间.
![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
![]() | 17.3 | 17.9 | 17.3 | 15.8 | 13.7 | 11.6 | 10.06 | 9.5 | 10.06 | 11.6 | 13.7 | 15.8 |
(1)根据这个统计表提供的数据,为惠灵顿市的月平均气温作出一个函数模型;
(2)当自然气温不低于13.7℃时,惠灵顿市最适宜旅游,试根据你所确定的函数模型,确定惠灵顿市的最佳旅游时间.
海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节某天时间与水深(单位:米)的关系表:
(1)请用一个函数近似地描述这个港口的水深y与时间t的函数关系;
(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上认为是安全的(船舶停靠时,船底只要不碰海底即可).某船吃水深度(船底离地面的距离)为6.5米.
①如果该船是旅游船,1:00进港,希望在同一天内安全出港,它至多能在港内停留多长时间(忽略进出港所需时间)?
②如果该船是货船,在2:00开始卸货,吃水深度以每小时0.5米的速度减少,由于台风等天气原因该船必须在10:00之前离开该港口,为了使卸下的货物尽可能多而且能安全驶离该港口,那么该船在什么整点时刻必须停止卸货(忽略出港所需时间)?
时刻 | 0:00 | 3:00 | 6:00 | 9:00 | 12:00 | 15:00 | 18:00 | 21:00 | 24:00 |
水深 | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.1 | 7.0 | 10.0 |
(1)请用一个函数近似地描述这个港口的水深y与时间t的函数关系;
(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上认为是安全的(船舶停靠时,船底只要不碰海底即可).某船吃水深度(船底离地面的距离)为6.5米.
①如果该船是旅游船,1:00进港,希望在同一天内安全出港,它至多能在港内停留多长时间(忽略进出港所需时间)?
②如果该船是货船,在2:00开始卸货,吃水深度以每小时0.5米的速度减少,由于台风等天气原因该船必须在10:00之前离开该港口,为了使卸下的货物尽可能多而且能安全驶离该港口,那么该船在什么整点时刻必须停止卸货(忽略出港所需时间)?
某市物价局调查了某种商品
年每个月的批发价格,调查发现,该商品的批发价格在
元的基础上按月份随正弦曲线波动,且
月份的批发价格最高为
元,
月份的批发价格最低为
元.已知该商品每件的销售价格
关于月份
的函数解析式是
.
(1)求该商品批发价格
关于月份
的函数解析式;
(2)假设某超市每月初都购进这种商品,且当月售完,求该超市在
年哪些月份销售该商品是盈利的?说明你的理由.









(1)求该商品批发价格


(2)假设某超市每月初都购进这种商品,且当月售完,求该超市在
