- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 几何中的三角函数模型
- + 三角函数在生活中的应用
- 三角函数在物理学中的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,公路MN和PQ在P处交汇,且∠QPN=30°,在A处有一所中学,AP=160 m,假设拖拉机行驶时,周围100米以内会受到噪声的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校受影响,已知拖拉机的速度为18 km/h,那么学校受影响的时间为________s.

某时钟的秒针端点A到中心点O的距离为
,秒针均匀地绕点O旋转,当时间
时,点A与钟面上标12的点B重合,将A,B两点的距离
表示成
的函数,则
________ ,其中
.






如图,一只蚂蚁绕一个竖直放置的圆环逆时针匀速爬行,已知圆环的半径为8
,圆环的圆心
距离地面的高度为10
,蚂蚁每12分钟爬行一圈,若蚂蚁的起始位置在最低点
处.
(1)试确定在时刻
(
)时蚂蚁距离地面的高度
;
(2)在蚂蚁绕圆环爬行的一圈内,有多长时间蚂蚁距离地面超过14
?




(1)试确定在时刻



(2)在蚂蚁绕圆环爬行的一圈内,有多长时间蚂蚁距离地面超过14


如图,半圆
的直径为
,
为直径延长线上的一点,
,
为半圆上任意一点,以
为一边作等边三角形
,设
.

(1)当
为何值时,四边形
面积最大,最大值为多少;
(2)当
为何值时,
长最大,最大值为多少.










(1)当


(2)当


如图,某公园摩天轮的半径为
,圆心距地面的高度为
,摩天轮做匀速转动,每
转一圈,摩天轮上的点
的起始位置在最低点处.
(1)已知在时刻
时
距离地面的高度
,(其中
),求
时
距离地面的高度;
(2)当离地面
以上时,可以看到公园的全貌,求转一圈中有多少时间可以看到公园的全貌?




(1)已知在时刻






(2)当离地面


某企业一天中不同时刻的用电量
(万千瓦时)关于时间
(小时,
)的函数
近似满足
,如图是函数
的部分图象(
对应凌晨
点).

(Ⅰ)根据图象,求
的值;
(Ⅱ)由于当地冬季雾霾严重,从环保的角度,既要控制火力发电厂的排放量,电力供应有限;又要控制企业的排放量,于是需要对各企业实行分时拉闸限电措施.已知该企业某日前半日能分配到的供电量
(万千瓦时)与时间
(小时)的关系可用线性函数模型
模拟.当供电量小于该企业的用电量时,企业就必须停产.初步预计停产时间在中午11点到12点间,为保证该企业既可提前准备应对停产,又可尽量减少停产时间,请从这个初步预计的时间段开始,用二分法帮其估算出精确到15分钟的停产时间段.









(Ⅰ)根据图象,求

(Ⅱ)由于当地冬季雾霾严重,从环保的角度,既要控制火力发电厂的排放量,电力供应有限;又要控制企业的排放量,于是需要对各企业实行分时拉闸限电措施.已知该企业某日前半日能分配到的供电量



已知某实验室一天的温度y (单位:℃)是关于时间t (单位:h)的函数,记为
,
=
,
[0,24).
(1)求实验室这一天温度逐渐升高的时间段,并求这一天的最大温差;
(2)若要求实验室温度不高于11℃,则在哪段时间内实验室需要降温?




(1)求实验室这一天温度逐渐升高的时间段,并求这一天的最大温差;
(2)若要求实验室温度不高于11℃,则在哪段时间内实验室需要降温?
已知某海滨浴场海浪的高度y(米)是时间t(0≤t≤24,单位:时)的函数,记作:
.下表是某日各时的浪高数据.
(1)根据以上数据,求函数y=f(t)的函数表达式;
(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00时至晚上20:00时之间,有多少时间可供冲浪者进行运动?

t(时) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
(1)根据以上数据,求函数y=f(t)的函数表达式;
(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00时至晚上20:00时之间,有多少时间可供冲浪者进行运动?