- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 任意角和弧度制
- 任意角的三角函数
- 同角三角函数的基本关系
- 三角函数的诱导公式
- 三角函数的图象与性质
- 函数y=Asin(ωx+φ)的图象变换
- + 三角函数的应用
- 几何中的三角函数模型
- 三角函数在生活中的应用
- 三角函数在物理学中的应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,某城市中心花园的边界是圆心为O,直径为1千米的圆,花园一侧有一条直线型公路l,花园中间有一条公路AB(AB是圆O的直径),规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA.规划要求:道路PB,QA不穿过花园.已知
,
(C、D为垂足),测得OC=0.9,BD=1.2(单位:千米).已知修建道路费用为m元/千米.在规划要求下,修建道路总费用的最小值为_____元.



如题所示:扇形ABC是一块半径为2千米,圆心角为60°的风景区,P点在弧BC上,现欲在风景区中规划三条三条商业街道PQ、QR、RP,要求街道PQ与AB垂直,街道PR与AC垂直,直线PQ表示第三条街道.

(1)如果P位于弧BC的中点,求三条街道的总长度;
(2)由于环境的原因,三条街道PQ、PR、QR每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)

(1)如果P位于弧BC的中点,求三条街道的总长度;
(2)由于环境的原因,三条街道PQ、PR、QR每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)
如图,射线
和
均为笔直的公路,扇形
区域(含边界)是一蔬菜种植园,其中
、
分别在射线
和
上.经测量得,扇形
的圆心角(即
为
、半径为1千米.为了方便菜农经营,打算在扇形
区域外修建一条公路
,分别与射线
、
交于
、
两点,并要求
与扇形弧
相切于点
.设
(单位:弧度),假设所有公路的宽度均忽略不计.

(1)试将公路
的长度表示为
的函数,并写出
的取值范围:
(2)试确定
的值,使得公路
的长度最小,并求出其最小值.





















(1)试将公路



(2)试确定


一位创业青年租用了一块边长为1百米的正方形田地
来养蜂、产蜜与售蜜,他在正方形的边
上分别取点
(不与正方形的顶点重合),连接
,使得
. 现拟将图中阴影部分规划为蜂源植物生长区,
部分规划为蜂巢区,
部分规划为蜂蜜交易区. 若蜂源植物生长区的投入约为
元/百米2,蜂巢区与蜂蜜交易区的投入约为
元/百米2,则这三个区域的总投入最少需要多少元?










根据市气象站对气温变化的数据统计显示,1月下旬某天市区温度随时间变化的曲线接近于函数
的图象(
,单位为小时,
表示气温,单位为摄氏度).
(1)请推断市区该天的最大温差;
(2)若某仓库存储食品要求仓库温度不高于
,根据推断的函数则这天中哪段时间仓库需要降温?



(1)请推断市区该天的最大温差;
(2)若某仓库存储食品要求仓库温度不高于

某商品一年内每件出厂价在5千元的基础上,按月呈
的模型波动(
为月份),已知3月份达到最高价7千元,7月份达到最低价3千元,根据以上条件可以确定
的解析式是( )




A.![]() |
B.![]() |
C.![]() |
D.![]() |
如图所示为一个观览车示意图,该观览车半径为
,圆上最低点与地面距离为
,
秒转动一圈,图中
与地面垂直,以
为始边,逆时针转动
角到
,设
点与地面距离为
.

(1)求
与
间关系的函数解析式;
(2)设从
开始转动,经过
秒到达
,求
与
间关系的函数解析式.










(1)求


(2)设从





设
是某港口水的深度
(米)关于时间
(时)的函数,其中
.下表是该港口某一天从
时至
时记录的时间
与水深
的关系:
经长期观察,函数
的图像可以近似地看成函数
的图像.下面的函数中,最能近似表示表中数据间对应关系的函数是( )








![]() | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
![]() | 12 | 15.1 | 12.1 | 9.1 | 11.9 | 14.9 | 11.9 | 8.9 | 12.1 |
经长期观察,函数


A.![]() |
B.![]() |
C.![]() |
D.![]() |