刷题首页
题库
高中数学
题干
一位创业青年租用了一块边长为1百米的正方形田地
来养蜂、产蜜与售蜜,他在正方形的边
上分别取点
(不与正方形的顶点重合),连接
,使得
. 现拟将图中阴影部分规划为蜂源植物生长区,
部分规划为蜂巢区,
部分规划为蜂蜜交易区. 若蜂源植物生长区的投入约为
元/百米
2
,蜂巢区与蜂蜜交易区的投入约为
元/百米
2
,则这三个区域的总投入最少需要多少元?
上一题
下一题
0.99难度 解答题 更新时间:2016-05-18 09:54:30
答案(点此获取答案解析)
同类题1
某时钟的秒针端点
A
到时钟的中心点
O
的距离为
,秒针均匀地绕点
O
旋转.当时间
时,点
A
与钟面上标“12”的点
B
重合,将
A
,
B
两点的距离
表示成
的函数,则
__________,其中
.( )
A.
B.
C.
D.
E.
同类题2
一半径为
的水轮如图所示,水轮圆心
距离水面
;已知水轮按逆时针做匀速转动,每
转一圈,如果当水轮上点
从水中浮现时(图中点
)开始计算时间.
(1)以水轮所在平面与水面的交线为
轴,以过点
且与水面垂直的直线为
轴,建立如图所示的直角坐标系,将点
距离水面的高度
表示为时间
的函数;
(2)点
第一次到达最高点大约要多长时间?
同类题3
如图所示,某小区为美化环境,准备在小区内草坪的一侧修建一条直路
,另一侧修建一条休闲大道,它的前一段
是函数
,
的一部分,后一段
是函数
(
,
),
时的图象,图象的最高点为
,
,垂足为
.
(1)求函数
的解析式;
(2)若在草坪内修建如图所示的儿童游乐园PMFE,问点
落在曲线
上何处时,儿童乐园的面积最大?
同类题4
现有一个以
、
为半径的扇形池塘,在
、
上分别取点
、
,作
、
分别交弧
于点
、
,且
,现用渔网沿着
、
、
、
将池塘分成如图所示的养殖区域.已知
,
,
(
).
(1)若区域Ⅱ的总面积为
,求
的值;
(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是30万元、40万元、20万元,试问:当
为多少时,年总收入最大?
同类题5
某地拟在一个
U
形水面
PABQ
(∠
A
=∠
B
=90°)上修一条堤坝(
E
在
AP
上,
N
在
BQ
上),围出一个封闭区域
EABN
,用以种植水生植物.为了美观起见,决定从
AB
上点
M
处分别向点
E
,
N
拉2条分隔线
ME
,
MN
,将所围区域分成3个部分(如图),每部分种植不同的水生植物.已知
AB
=
a
,
EM
=
BM
,∠
MEN
=90°,设所拉分隔线总长度为
l
.
(1)设∠
AME
=2θ,求用θ表示的
l
函数表达式,并写出定义域;
(2)求
l
的最小值.
相关知识点
三角函数与解三角形
三角函数
三角函数的应用
三角函数在生活中的应用
基本不等式求和的最小值