刷题首页
题库
高中数学
题干
如图所示,直四棱柱
内接于半径为
的半球
,四边形
为正方形,则该四棱柱的体积最大时,
的长为()
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2016-08-18 05:49:50
答案(点此获取答案解析)
同类题1
从边长为
的正方形铁皮的四个角各截去一个边长为
的小正方形,再将四边向上折起,做成一个无盖的长方体铁盒,且要求长方体的高度
与底面正方形的边长的比不超过常数
.
问:(1)求长方体的容积
关于
的函数表达式;(2)
取何值时,长方体的容积
有最大值?
同类题2
现有一段长为
的铁丝,要把它围成一个底面一边长为另一边长2倍的长方体形状的框架,当长方体体积最大时,底面的较短边长是( )
A.
B.
C.
D.
同类题3
将半径为
的圆形铁皮剪去一个圆心角为
的扇形,用剩下的扇形铁皮制成一个圆锥形的容器,该圆锥的高记为
,体积为
.
(1)求体积
有关
的函数解析式.
(2)求当扇形的圆心角
多大时,容器的体积
最大.
同类题4
已知半径为
的球内有一个内接四棱锥
,四棱锥
的侧棱长都相等,底面是正方形,当四棱锥
的体积最大时,它的底面边长等于__________
.
同类题5
用一根长为
分米的铁丝制作一个长方体框架(由12条棱组成),使得长方体框架的底面长是宽的
倍.在制作时铁丝恰好全部用完且损耗忽略不计.现设该框架的底面宽是
分米,用
表示该长方体框架所占的空间体积(即长方体的体积).
(1)试求函数
的解析式及其定义域;
(2)当该框架的底面宽
取何值时,长方体框架所占的空间体积最大,并求出最大值.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题