刷题首页
题库
高中数学
题干
(题文)某商场为促销要准备一些正三棱锥形状的装饰品,用半径为
的圆形包装纸包装.要求如下:正三棱锥的底面中心与包装纸的圆心重合,包装纸不能裁剪,沿底边向上翻折,其边缘恰好达到三棱锥的顶点,如图所示.设正三棱锥的底面边长为
,体积为
.
(1)求
关于
的函数关系式;
(2)在所有能用这种包装纸包装的正三棱锥装饰品中,
的最大值是多少?并求此时
的值.
上一题
下一题
0.99难度 解答题 更新时间:2016-06-07 12:52:15
答案(点此获取答案解析)
同类题1
某种水箱用的“浮球”是由两个相同半球和一个圆柱筒组成,它的轴截面如图所示,已知半球的直径是
,圆柱筒高
,为增强该“浮球”的牢固性,给“浮球”内置一“双蝶形”防压卡,防压卡由金属材料杆
,
,
,
,
,
及
焊接而成,其中
,
分别是圆柱上下底面的圆心,
,
,
,
均在“浮球”的内壁上,
AC
,
BD
通过“浮球”中心
,且
、
均与圆柱的底面垂直.
(1)设
与圆柱底面所成的角为
,试用
表示出防压卡中四边形
的面积
,并写出
的取值范围;
(2)研究表明,四边形
的面积越大,“浮球”防压性越强,求四边形
面积取最大值时,点
到圆柱上底面的距离
.
同类题2
在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x为
(m).
同类题3
内接于半径为
R
的球且体积最大的圆锥的高为( )
A.
R
B.2
R
C.
D.
同类题4
如图所示的镀锌铁皮材料ABCD,上沿DC为圆弧,其圆心为A,圆半径为2米,AD⊥AB,BC⊥AB,且BC=1米。现要用这块材料裁一个矩形PEAF(其中P在圆弧DC上、E在线段AB上,F在线段AD上)做圆柱的侧面,若以PE为母线,问如何裁剪可使圆柱的体积最大?其最大值是多少?
同类题5
如图边长为2的正方形花园的一角是以A为中心,1为半径的扇形水池.现需在其余部分设计一个矩形草坪PNCQ,其中P是水池边上任意一点,点N、Q分别在边BC和CD上,设∠PAB为θ.
(I)用θ表示矩形草坪PNCQ的面积,并求其最小值;
(II)求点P到边BC和AB距离之比
的最小值.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题