刷题首页
题库
高中数学
题干
(本小题满分14分)某商场为促销要准备一些正三棱锥形状的装饰品,用半径为
的圆形包装纸包装.要求如下:正三棱锥的底面中心与包装纸的圆心重合,包装纸不能裁剪,沿底边向上翻折,其边缘恰好达到三棱锥的顶点,如图所示.设正三棱锥的底面边长为
,体积为
.
(1)求
关于
的函数关系式;
(2)在所有能用这种包装纸包装的正三棱锥装饰品中,
的最大值是多少?并求此时
的值.
上一题
下一题
0.99难度 解答题 更新时间:2015-05-13 06:52:04
答案(点此获取答案解析)
同类题1
已知圆柱的表面积为定值S,则当圆柱的容积V最大时圆柱的高h的值为________.
同类题2
已知双曲线
:
和圆
:
(其中原点
为圆心),过双曲线上一点
引圆
的两条切线,切点分别为
、
.
(1)若双曲线
上存在点
,使得
,求双曲线离心率
的取值范围;
(2)求直线
的方程;
(3)求三角形
面积的最大值.
同类题3
如果一个正方体的体积在数值上等于
,表面积在数值上等于
,且
恒成立,则实数
的范围是()
A.
B.
C.
D.以上答案都不对
同类题4
已知球
的直径长为12,当它的内接正四棱锥的体积最大时,该四棱锥的高为( )
A.4
B.6
C.8
D.12
同类题5
(本小题满分14分)如图,有一景区的平面图是一半圆形,其中AB长为2km,C、D两点在半圆弧上,满足BC=C
A.设
.
(1)现要在景区内铺设一条观光道路,由线段AB、BC、CD和DA组成,则当θ为何值时,观光道路的总长
最长,并求
的最大值.
(2)若要在景区内种植鲜花,其中在
和
内种满鲜花,
在扇形
内种一半面积的鲜花,则当θ为何值时,鲜花种植面积S最大.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题