- 集合与常用逻辑用语
- 函数与导数
- 利润最大问题
- + 面积、体积最大问题
- 成本最小问题
- 用料最省问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一件要在展览馆展出的文物近似于圆柱形,底面直径为0.8米,高为1.2米,体积约为0.6立方米.为保护文物,需要设计各面是玻璃平面的正四棱柱形无底保护罩,保护罩底面边长不小于1.2米,高是底面边长的2倍.保护罩内充满保护文物的无色气体,气体每立方米500元.为防止文物发生意外,展览馆向保险公司进行了投保,保险费用与保护罩的占地面积成反比例,当占地面积为1平方米时,保险费用为48000元.
(1)若保护罩的底面边长为2.5米,求气体费用与保险费用的和;
(2)为使气体费用与保险费用的和最低,保护罩应如何设计?
(1)若保护罩的底面边长为2.5米,求气体费用与保险费用的和;
(2)为使气体费用与保险费用的和最低,保护罩应如何设计?
如图所示,现有一张边长为
的正三角形纸片
,在三角形的三个角沿图中虚线剪去三个全等的四边形
,
,
(剪去的四边形均有一组对角为直角),然后把三个矩形
,
,
折起,构成一个以
为底面的无盖正三棱柱.

(1)若所折成的正三棱柱的底面边长与高之比为3,求该三棱柱的高;
(2)求所折成的正三棱柱的体积的最大值.










(1)若所折成的正三棱柱的底面边长与高之比为3,求该三棱柱的高;
(2)求所折成的正三棱柱的体积的最大值.
用长为
的钢条围成一个长方体形状的框架(即12条棱长总和为
),要求长方体的长与宽之比为
,则该长方体最大体积是()



A.24 | B.15 | C.12 | D.6 |
某种儿童型防蚊液储存在一个容器中,该容器由两个半球和一个圆柱组成,(其中上半球是容器的盖子,防蚊液储存在下半球及圆柱中),容器轴截面如图所示,两头是半圆形,中间区域是矩形
,其外周长为
毫米.防蚊液所占的体积为圆柱体积和一个半球体积之和.假设
的长为
毫米.(注:
,其中
为球半径,
为圆柱底面积,
为圆柱的高)

(1)求容器中防蚊液的体积
关于
的函数关系式;
(2)如何设计
与
的长度,使得
最大?









(1)求容器中防蚊液的体积


(2)如何设计



将两个长、宽、高分别为5,4,3的长方体垒在一起,使其中两个面完全重合,组成一个大长方体,则大长方体的外接球表面积的最大值为( )
A.![]() | B.![]() | C.![]() | D.![]() |