- 集合与常用逻辑用语
- 函数与导数
- 利润最大问题
- + 面积、体积最大问题
- 成本最小问题
- 用料最省问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,已知曲线C1:y=x3(x≥0)与曲线C2:y=-2x3+3x(x≥0)交于点O,A,直线x=t(0<t<1)与曲线C1 、C2交于点B,D.

(1)写出四边形ABOD的面积S与t的函数关系S=f(t);
(2)讨论f(t)的单调性,并求f(t)的最大值.

(1)写出四边形ABOD的面积S与t的函数关系S=f(t);
(2)讨论f(t)的单调性,并求f(t)的最大值.
如图所示的镀锌铁皮材料ABCD,上沿DC为圆弧,其圆心为A,圆半径为2米,AD⊥AB,BC⊥AB,且BC=1米。现要用这块材料裁一个矩形PEAF(其中P在圆弧DC上、E在线段AB上,F在线段AD上)做圆柱的侧面,若以PE为母线,问如何裁剪可使圆柱的体积最大?其最大值是多少?

南通风筝是江苏传统手工艺品之一.现用一张长2 m,宽1.5 m的长方形牛皮纸ABCD裁剪风筝面,裁剪方法如下:分别在边AB,AD上取点E,F,将三角形AEF沿直线EF翻折到
处,点
落在牛皮纸上,沿
,
裁剪并展开,得到风筝面
,如图1.
(1)若点E恰好与点B重合,且点
在BD上,如图2,求风筝面
的面积;
(2)当风筝面
的面积为
时,求点
到AB距离的最大值.





(1)若点E恰好与点B重合,且点


(2)当风筝面




传说《西游记》中孙悟空的“如意金箍棒”原本是东海海底的一枚“定海神针”.作为兵器,“如意金箍棒”威力巨大,且只有孙悟空能让其大小随意变化。假定孙悟空在使用“如意金箍棒”与各路妖怪打斗时,都将其变化为底面半径为4
至10
之间的圆柱体。现假定孙悟空刚与一妖怪打斗完毕,并降伏了此妖怪,此时“如意金箍棒”的底面半径为10
,长度为
.在此基础上,孙悟空使“如意金箍棒”的底面半径以每秒1
匀速缩短,同时长度以每秒40
匀速增长,且在这一变化过程中,当“如意金箍棒”的底面半径为8
时,其体积最大.
(1)求在这一变化过程中,“如意金箍棒”的体积
随时间
(秒)变化的解析式,并求出其定义域;
(2)假设在这一变化过程中,孙悟空在“如意金箍棒”体积最小时,将其定型,准备迎战下一个妖怪。求此时“如意金箍棒”的底面半径。







(1)求在这一变化过程中,“如意金箍棒”的体积


(2)假设在这一变化过程中,孙悟空在“如意金箍棒”体积最小时,将其定型,准备迎战下一个妖怪。求此时“如意金箍棒”的底面半径。
有一矩形硬纸板材料(厚度忽略不计),一边
长为6分米,另一边足够长.现从中截取矩形
(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中
是以
为圆心、
的扇形,且弧
,
分别与边
,
相切于点
,
.

(1)当
长为1分米时,求折卷成的包装盒的容积;
(2)当
的长是多少分米时,折卷成的包装盒的容积最大?












(1)当

(2)当

如图,在圆锥
中,底面半径
为
,母线长
为
.用一个平行于底面的平面去截圆锥,截面圆的圆心为
,半径为
,现要以截面为底面,圆锥底面圆心
为顶点挖去一个倒立的小圆锥
,记圆锥
体积为
.

(1)将
表示成
的函数;
(2)求
的最大值.












(1)将


(2)求
