- 集合与常用逻辑用语
- 函数与导数
- 利润最大问题
- + 面积、体积最大问题
- 成本最小问题
- 用料最省问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分14分)如图,有一景区的平面图是一半圆形,其中AB长为2km,C、D两点在半圆弧上,满足BC=C

(1)现要在景区内铺设一条观光道路,由线段AB、BC、CD和DA组成,则当θ为何值时,观光道路的总长
最长,并求
的最大值.
(2)若要在景区内种植鲜花,其中在
和
内种满鲜花,
在扇形
内种一半面积的鲜花,则当θ为何值时,鲜花种植面积S最大.
A.设![]() |

(1)现要在景区内铺设一条观光道路,由线段AB、BC、CD和DA组成,则当θ为何值时,观光道路的总长


(2)若要在景区内种植鲜花,其中在


在扇形

某地兴建一休闲商业广场,欲在如图所示的一块不规则用地规划建成一个矩形的商业楼区,余下作为休闲区域,已知
,且AB=BC=2AO=4km,曲线段OC是以O为顶点且开口向上的抛物线的一段,如果要使矩形的相邻两边分别落在AB、BC上,且一个顶点落在曲线段OC上,应如何规划才能使矩形商业楼区的用地面积最大?


在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对
称图形),其中矩形
的三边
,由长6分米的材料弯折而成,
边的长
为
分米 (
);曲线
拟从以下两种曲线中选择一种:曲线
是一段余弦曲线
(在如图所示的平面直角坐标系中,其解析式为
),此时记门的最高点
到
边的距离为
;曲线
是一段抛物线,其焦点到准线的距离为
,此时记门的最高点
到
边的距离为
.

(1)试分别求出函数
、
的表达式;
(2)要使得点
到
边的距离最大,应选用哪一种曲线?此时,最大值是多少?
称图形),其中矩形



为




(在如图所示的平面直角坐标系中,其解析式为



边的距离为




到



(1)试分别求出函数


(2)要使得点


如图, 在实施棚户区改造工程中,某居委会决定对
地段上的危旧房进行推平改建,拟在
地段上新建一幢居民安置楼, 在
安置楼正南面的
地段上建一个活动中心,活动中心的侧面图由两部分构成, 下部分
是矩形, 上部分是以
为直径的半圆
,活动中心的规划设计需满足以下要求:①
米; ②
;③当地“最斜光线”与水平线的夹角
满足
,活动中心在当地“最斜光线”照射下落在
安置楼上的影长
不超过
米.

(1)若
米, 求其前后宽度
的最大值;
(2)设活动中心侧面的面积为
,活动中心的 “美观系数”
,那么在用足空间的前提下, 当门面高
为多少米时, 可使得“美观系数”
最大?
(参考数据:计算中
取
)















(1)若


(2)设活动中心侧面的面积为




(参考数据:计算中


如图,现在要在一块半径为1m.圆心角为60°的扇形纸板AOB上剪出一个平行四边形MNPQ,使点P在AB弧上,点Q在OA上,点M,N在OB上,设∠BOP=θ,YMNPQ的面积为S.
(1)求S关于θ的函数关系式;
(2)求S的最大值及相应θ的值
(1)求S关于θ的函数关系式;
(2)求S的最大值及相应θ的值

如图,在半径为
的半圆形(
为圆心)铝皮上截取一块矩形材料
,其中
在直径上,点
在圆周上.

(1)设
,将矩形
的面积
表示成
的函数,并写出其定义域;
(2)怎样截取,才能使矩形材料
的面积最大?并求出最大面积.






(1)设




(2)怎样截取,才能使矩形材料

日前,扬州下达了2018年城市建设和环境提升重点工程项目计划,其中将对一块以O为圆心,R(R为常数,单位:米)为半径的半圆形荒地进行治理改造,如图所示,△OBD区域用于儿童乐园出租,弓形BCD区域(阴影部分)种植草坪,其余区域用于种植观赏植物.已知种植草坪和观赏植物的成本分别是每平方米5元和55元,儿童乐园出租的利润是每平方米95元.
(1)设∠BOD=θ(单位:弧度),用θ表示弓形BCD的面积S弓=f(θ);
(2)如果市规划局邀请你规划这块土地,如何设计∠BOD的大小才能使总利润最大?并求出该最大值.
(1)设∠BOD=θ(单位:弧度),用θ表示弓形BCD的面积S弓=f(θ);
(2)如果市规划局邀请你规划这块土地,如何设计∠BOD的大小才能使总利润最大?并求出该最大值.

现有一块大型的广告宣传版面,其形状是右图所示的直角梯形
.某厂家因产品宣传的需要,拟投资规划出一块区域(图中阴影部分)为产品做广告,形状为直角梯形
(点
在曲线段
上,点
在线段
上).已知
,
,其中曲线段
是以
为顶点,
为对称轴的抛物线的一部分.

(1)建立适当的平面直角坐标系,分别求出曲线段
与线段
的方程;
(2)求该厂家广告区域
的最大面积.












(1)建立适当的平面直角坐标系,分别求出曲线段


(2)求该厂家广告区域
