在外接球半径为4的正三棱锥中,体积最大的正三棱锥的高(  )
A.B.C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
(本小题满分14分)如图,有一景区的平面图是一半圆形,其中AB长为2km,C、D两点在半圆弧上,满足BC=C
A.设

(1)现要在景区内铺设一条观光道路,由线段AB、BC、CD和DA组成,则当θ为何值时,观光道路的总长最长,并求的最大值.
(2)若要在景区内种植鲜花,其中在内种满鲜花,
在扇形内种一半面积的鲜花,则当θ为何值时,鲜花种植面积S最大.
当前题号:2 | 题型:解答题 | 难度:0.99
某地兴建一休闲商业广场,欲在如图所示的一块不规则用地规划建成一个矩形的商业楼区,余下作为休闲区域,已知,且AB=BC=2AO=4km,曲线段OC是以O为顶点且开口向上的抛物线的一段,如果要使矩形的相邻两边分别落在AB、BC上,且一个顶点落在曲线段OC上,应如何规划才能使矩形商业楼区的用地面积最大?
当前题号:3 | 题型:解答题 | 难度:0.99
在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对
称图形),其中矩形的三边,由长6分米的材料弯折而成,边的长
分米 ();曲线拟从以下两种曲线中选择一种:曲线是一段余弦曲线
(在如图所示的平面直角坐标系中,其解析式为),此时记门的最高点
边的距离为;曲线是一段抛物线,其焦点到准线的距离为,此时记门的最高点
边的距离为.

(1)试分别求出函数的表达式;
(2)要使得点边的距离最大,应选用哪一种曲线?此时,最大值是多少?
当前题号:4 | 题型:解答题 | 难度:0.99
如图, 在实施棚户区改造工程中,某居委会决定对地段上的危旧房进行推平改建,拟在地段上新建一幢居民安置楼, 在安置楼正南面的地段上建一个活动中心,活动中心的侧面图由两部分构成, 下部分是矩形, 上部分是以为直径的半圆,活动中心的规划设计需满足以下要求:①米; ②;③当地“最斜光线”与水平线的夹角满足,活动中心在当地“最斜光线”照射下落在安置楼上的影长不超过米.

(1)若米, 求其前后宽度的最大值;
(2)设活动中心侧面的面积为,活动中心的 “美观系数”,那么在用足空间的前提下, 当门面高为多少米时, 可使得“美观系数”最大?
(参考数据:计算中)
当前题号:5 | 题型:解答题 | 难度:0.99
如图,现在要在一块半径为1m.圆心角为60°的扇形纸板AOB上剪出一个平行四边形MNPQ,使点PAB弧上,点QOA上,点M,NOB上,设∠BOPθ,YMNPQ的面积为S
(1)求S关于θ的函数关系式;
(2)求S的最大值及相应θ的值
当前题号:6 | 题型:解答题 | 难度:0.99
如图,在半径为的半圆形(为圆心)铝皮上截取一块矩形材料,其中在直径上,点在圆周上.

(1)设,将矩形的面积表示成的函数,并写出其定义域;
(2)怎样截取,才能使矩形材料的面积最大?并求出最大面积.
当前题号:7 | 题型:解答题 | 难度:0.99
日前,扬州下达了2018年城市建设和环境提升重点工程项目计划,其中将对一块以O为圆心,R(R为常数,单位:米)为半径的半圆形荒地进行治理改造,如图所示,△OBD区域用于儿童乐园出租,弓形BCD区域(阴影部分)种植草坪,其余区域用于种植观赏植物.已知种植草坪和观赏植物的成本分别是每平方米5元和55元,儿童乐园出租的利润是每平方米95元.
(1)设∠BOD=θ(单位:弧度),用θ表示弓形BCD的面积S=f(θ);
(2)如果市规划局邀请你规划这块土地,如何设计∠BOD的大小才能使总利润最大?并求出该最大值.
当前题号:8 | 题型:解答题 | 难度:0.99
现有一块大型的广告宣传版面,其形状是右图所示的直角梯形.某厂家因产品宣传的需要,拟投资规划出一块区域(图中阴影部分)为产品做广告,形状为直角梯形(点在曲线段上,点在线段上).已知,其中曲线段是以为顶点,为对称轴的抛物线的一部分.

(1)建立适当的平面直角坐标系,分别求出曲线段与线段的方程;
(2)求该厂家广告区域的最大面积.
当前题号:9 | 题型:解答题 | 难度:0.99
长的一段铁丝折成一个面积最大的矩形,这个矩形的长、宽各为多少?并求出这个最大值.
当前题号:10 | 题型:解答题 | 难度:0.99