刷题首页
题库
高中数学
题干
如图所示,现有一张边长为
的正三角形纸片
,在三角形的三个角沿图中虚线剪去三个全等的四边形
,
,
(剪去的四边形均有一组对角为直角),然后把三个矩形
,
,
折起,构成一个以
为底面的无盖正三棱柱.
(1)若所折成的正三棱柱的底面边长与高之比为3,求该三棱柱的高;
(2)求所折成的正三棱柱的体积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2019-06-18 03:21:53
答案(点此获取答案解析)
同类题1
某企业拟生产一种如图所示的圆柱形易拉罐(上下底面及侧面的厚度不计),易拉罐的体积为
,设圆柱的高度为
,底面半径为
,且
,
假设该易拉罐的制造费用仅与其表面积有关.已知易拉罐侧面制造费用为
元
,易拉罐上下底面的制造费用均为
元
为常数).
(1)写出易拉罐的制造费用
(元)关于
的函数表达式,并求其定义域;
(2)求易拉罐制造费用最低时
的值.
同类题2
某地拟规划种植一批芍药,为了美观,将种植区域(区域Ⅰ)设计成半径为
的扇形
,中心角
.为方便观赏,增加收入,在种植区域外围规划观赏区(区域Ⅱ)和休闲区(区域Ⅲ),并将外围区域按如图所示的方案扩建成正方形
,其中点
,
分别在边
和
上.已知种植区、观赏区和休闲区每平方千米的年收入分别是10万元、20万元、20万元.
(1)要使观赏区的年收入不低于5万元,求
的最大值;
(2)试问:当
为多少时,年总收入最大?
同类题3
某城市计划在如图所示的空地
上竖一块长方形液晶广告屏幕
,宣传该城市未来十年计划、目标等相关政策.已知四边形
是边长为30米的正方形,电源在点
处,点
到边
的距离分别为9米,3米,且
,线段
必过点
,端点
分别在边
上,设
米,液晶广告屏幕
的面积为
平方米.
(Ⅰ)求
关于
的函数关系式及其定义域;
(Ⅱ)当
为何值时,液晶广告屏幕
的面积
最小?
同类题4
2019年扬州市政府打算在如图所示的某“葫芦”形花坛中建一喷泉,该花坛的边界是两个半径为12米的圆弧围成,两圆心
、
之间的距离为
米.在花坛中建矩形喷泉,四个顶点
,
,
,
均在圆弧上,
于点
.设
.
当
时,求喷泉
的面积
;
(2)求
为何值时,可使喷泉
的面积
最大?.
同类题5
已知球
的直径长为12,当它的内接正四棱锥的体积最大时,该四棱锥的高为( )
A.4
B.6
C.8
D.12
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题