刷题首页
题库
高中数学
题干
某种儿童型防蚊液储存在一个容器中,该容器由两个半球和一个圆柱组成,(其中上半球是容器的盖子,防蚊液储存在下半球及圆柱中),容器轴截面如图所示,两头是半圆形,中间区域是矩形
,其外周长为
毫米.防蚊液所占的体积为圆柱体积和一个半球体积之和.假设
的长为
毫米.(注:
,其中
为球半径,
为圆柱底面积,
为圆柱的高)
(1)求容器中防蚊液的体积
关于
的函数关系式;
(2)如何设计
与
的长度,使得
最大?
上一题
下一题
0.99难度 解答题 更新时间:2019-08-09 04:21:14
答案(点此获取答案解析)
同类题1
欲设计如图所示的平面图形,它由上、下两部分组成,其中上部分是弓形(圆心为
,半径为
,
,
),下部分是矩形
.
(1)若
,求该平面图形的周长的最大值;
(2)若
,试确定
的值,使得该平面图形的面积最大.
同类题2
已知表面积为100
的球内接一个圆锥,则该圆锥体积的最大值为
A.
B.
C.
D.
同类题3
设四棱锥的底面是一个正方形,5 个顶点都在一个半径为1的球面上,则四棱锥的体积的最大值为__________.
同类题4
已知某种圆柱形油料罐(有盖)的表面积为
,则该圆柱形油料罐的容积最大时,底面圆的半径等于__________.
(注:圆柱的体积公式和侧面积公式分别为
,
,
,
分别为圆柱底面圆的半径和高.)
同类题5
如图,AOB是一块半径为r的扇形空地,
.某单位计划在空地上修建一个矩形的活动场地OCDE及一矩形停车场EFGH,剩余的地方进行绿化.若
,设
(Ⅰ)记活动场地与停车场占地总面积为
,求
的表达式;
(Ⅱ)当
为何值时,可使活动场地与停车场占地总面积最大.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
面积、体积最大问题
柱体体积的有关计算