- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- 导数在研究函数中的作用
- + 导数的综合应用
- 导数在函数中的其他应用
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f0(x)=
(x>0),设fn(x)为fn-1(x)的导数,n∈N*.

(1)求2f1+
f2
的值;
(2)证明:对任意的n∈N*,等式=
都成立.
已知曲线Cn:x2﹣2nx+y2=0,(n=1,2,…).从点P(﹣1,0)向曲线Cn引斜率为kn(kn>0)的切线ln,切点为Pn(xn,yn).
(1)求数列{xn}与{yn}的通项公式;
(2)证明:
.
(1)求数列{xn}与{yn}的通项公式;
(2)证明:

对于三次函数
,定义:设
是
的导数,若方程
有实数解
,则称
为函数
的拐点.某同学经过探索发现任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数
,则
______;
______.










如图,铁路线上AC段长99km,工厂B到铁路的距离BC为20km,现在要在AC上某一点D处,向B修一条公路,已知铁路每吨千米与公路每吨千米的运费之比为λ(0<λ<1),为了使从A到B的运费最省,D应选在离C距离多远处.
