- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- 导数在研究函数中的作用
- + 导数的综合应用
- 导数在函数中的其他应用
- 利用导数解决实际应用问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示的钢板的边界
是抛物线的一部分,且
垂直于抛物线的对称轴,现欲从钢板上截取一块以
为下底边的等腰梯形钢板
,其中
,
均在抛物线弧上.设
(米),且
.
(1)当
时,求等腰梯形钢板的面积;
(2)当
为何值时,等腰梯形钢板的面积最大?并求出最大值.








(1)当

(2)当


某厂要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边要砌新墙,当砌新墙所用的材料最省时,堆料场的长和宽分别
为 ( )
为 ( )
A.32米,16米 | B.30米,15米 |
C.40米,20米 | D.36米,18米 |
某市大学生创业孵化基地某公司生产一种“儒风邹城”特色的旅游商品.该公司年固定成本为10万元,每生产千件需另投入2.7万元.设该公司年内共生产该旅游商品
千件并全部销售完,每千件的销售收入为
万元,且满足函数关系:
.
(1)写出年利润
(万元)关于该旅游商品
(千件)的函数解析式;
(2)年产量为多少千件时,该公司在该旅游商品的生产中所获年利润最大?



(1)写出年利润


(2)年产量为多少千件时,该公司在该旅游商品的生产中所获年利润最大?
为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆O及等腰直角三角形EFH,其中
.为裁剪出面积尽可能大的梯形铁片ABCD(不计损耗),将点A,B放在弧EF上,点C、D放在斜边
上,且
,设
.

(1)求梯形铁片ABCD的面积
关于
的函数关系式;
(2)试确定
的值,使得梯形铁片ABCD的面积
最大,并求出最大值.





(1)求梯形铁片ABCD的面积


(2)试确定


已知偶函数y=" f" (x)对于任意的x
满足f
(x)cosx+f(x)sinx>0(其中f
(x)是函数f (x)的导函数),则下列不等式中成立的有








