- 集合与常用逻辑用语
- 函数与导数
- 函数最值与极值的关系辨析
- 由导数求函数的最值
- 已知函数最值求参数
- + 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,(
).
(1)当
时,求
的单调区间;
(2)设点
,
是函数
图象的不同两点,其中
,
,是否存在实数
,使得
,且函数
在点
切线的斜率为
,若存在,请求出
的范围;若不存在,请说明理由.


(1)当


(2)设点











已知函数
,
,
.
(1)当
时,求函数
的极值;
(2)若在区间
上存在不相等的实数
,使得
成立,求
的取值范围;
(3)设
的图象为
,
的图象为
,若直线
与
分别交于
,问是否存在整数
,使
在
处的切线与
在
处的切线互相平行,若存在,求出
的所有值,若不存在,请说明理由.



(1)当


(2)若在区间




(3)设













已知函数
-2为自然对数的底数,
).
(1)若曲线
在点
处的切线与曲线
至多有一个公共点时,求
的取值范围;
(2)当
时,若函数
有两个零点,求
的取值范围.


(1)若曲线




(2)当


