- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- + 利用导数研究函数的最值
- 函数最值与极值的关系辨析
- 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,其中
.
(1)设
是
的导函数,求函数
的极值;
(2)是否存在常数
,使得
时,
恒成立,且
有唯一解,若存在,求出
的值;若不存在,说明理由.


(1)设



(2)是否存在常数





已知函数
.
(Ⅰ)当
时,求曲线
在点
处的切线方程;
(Ⅱ)当
时,若
在区间
上的最小值为
,求
的取值范围;
(Ⅲ)若对任意
,有
恒成立,求
的取值范围.

(Ⅰ)当



(Ⅱ)当





(Ⅲ)若对任意


