- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- + 利用导数研究函数的最值
- 函数最值与极值的关系辨析
- 由导数求函数的最值
- 已知函数最值求参数
- 函数单调性、极值与最值的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设函数
在区间
上的导函数为
,
在区间
上的导函数为
,若在区间
上
恒成立,则称函数
在区间
上为“凸函数”.已知
,若对任意的实数
满足
时,函数
在区间
上为“凸函数”,则区间
可以是
















A.![]() | B.![]() | C.![]() | D.![]() |
已知曲线
:
在点
(
)处的切线
的斜率为
,直线
交
轴,
轴分别于点
,
,且
.给出以下结论:
①
;
②当
时,
的最小值为
;
③当
时,
;
④当
时,记数列
的前
项和为
,则
.
其中,正确的结论有 .(写出所有正确结论的序号)













①

②当



③当


④当





其中,正确的结论有 .(写出所有正确结论的序号)
已知函数
.
(1)求函数
的最大值;
(2)若函数
与
有相同极值点.
①求实数
的值;
②若对于
(
为自然对数的底数),不等式
恒成立,
求实数
的取值范围.

(1)求函数

(2)若函数


①求实数

②若对于



求实数
