- 集合与常用逻辑用语
- 函数与导数
- 函数极值的辨析
- + 求已知函数的极值
- 根据极值求参数
- 函数(导函数)图象与极值的关系
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=alnx﹣ex(a∈R).其中e是自然对数的底数.
(1)讨论函数f(x)的单调性并求极值;
(2)令函数g(x)=f(x)+ex,若x∈[1,+∞)时,g(x)≥0,求实数a的取值范围.
(1)讨论函数f(x)的单调性并求极值;
(2)令函数g(x)=f(x)+ex,若x∈[1,+∞)时,g(x)≥0,求实数a的取值范围.
已知
为实数,函数
,函数
.
(1)当
时,令
,求函数
的极值;
(2)当
时,令
,是否存在实数
,使得对于函数
定义域中的任意实数
,均存在实数
,有
成立,若存在,求出实数
的取值集合;若不存在,请说明理由.



(1)当



(2)当








已知函数
.
(1)求函数
的最小值;
(2)当
时,记函数
的所有单调递增区间的长度为
,所有单调递减区间的长度为
,证明:
.(注:区间长度指该区间在
轴上所占位置的长度,与区间的开闭无关.)

(1)求函数

(2)当





