- 集合与常用逻辑用语
- 函数与导数
- 利用导数研究函数的单调性
- + 利用导数研究函数的极值
- 函数极值的辨析
- 求已知函数的极值
- 根据极值求参数
- 函数(导函数)图象与极值的关系
- 利用导数研究函数的最值
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
的定义域为
,部分对应值如下表,
的导函数
的图象如图所示.

下列关于
的命题:
①函数
的极大值点为
;
②函数
在
上是减函数;
③如果当
时,
的最大值是
,那么
的最大值为
;
④当
时,函数
有
个零点;
⑤函数
的零点个数可能为
、
、
、
、
个.
其中正确命题的个数是( )




![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |

下列关于

①函数


②函数


③如果当





④当



⑤函数






其中正确命题的个数是( )
A.![]() | B.![]() | C.![]() | D.![]() |
已知函数
.
(1)当
时,求
的极值;
(2)当
时,若函数
恰有两个不同的零点,求
的值;
(3)当
时,若
的解集为
,且
中有且仅有一个整数,求实数
的取值范围.

(1)当


(2)当



(3)当




