- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- + 函数模型的应用实例
- 利用给定函数模型解决实际问题
- 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄
元一年定期,若年利率为
保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为





A.![]() | B.![]() |
C.![]() | D.![]() |
窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一.图中的窗花是由一张圆形纸片剪去一个正十字形剩下的部分,正十字形的顶点都在圆周上.已知正十字形的宽和长都分别为x,y(单位:dm)且x<y,若剪去的正十字形部分面积为4dm2.

(1)求y关于x的函数解析式,并求其定义域;
(2)现为了节约纸张,需要所用圆形纸片面积最小.当x取何值时,所用到的圆形纸片面积最小,并求出其最小值.

(1)求y关于x的函数解析式,并求其定义域;
(2)现为了节约纸张,需要所用圆形纸片面积最小.当x取何值时,所用到的圆形纸片面积最小,并求出其最小值.
某工厂因排污比较严重,决定着手整治,一个月时污染度为
,整治后前四个月的污染度如下表:
污染度为
后,该工厂即停止整治,污染度又开始上升,现用下列三个函数模拟从整治后第一个月开始工厂的污染模式:
,
,
,其中
表示月数,
、
、
分别表示污染度.
(1)问选用哪个函数模拟比较合理,并说明理由;
(2)若以比较合理的模拟函数预测,整治后有多少个月的污染度不超过
.

月数 | ![]() | ![]() | ![]() | ![]() | … |
污染度 | ![]() | ![]() | ![]() | ![]() | … |
污染度为








(1)问选用哪个函数模拟比较合理,并说明理由;
(2)若以比较合理的模拟函数预测,整治后有多少个月的污染度不超过

甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品
(百台),其总成本为
(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入
(万元)满足
,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,完成下列问题:
(1)写出利润函数
的解析式(利润=销售收入-总成本);
(2)甲厂生产多少台产品时,可使盈利最多?




(1)写出利润函数

(2)甲厂生产多少台产品时,可使盈利最多?
某单位有员工1000名,平均每人每年创造利润10万元,为了增加企业竞争力,决定优化产业结构,调整出
(
)名员工从事第三产业,调整后这
名员工他们平均每人创造利润为
万元,剩下的员工平均每人每年创造的利润可以提高
.
(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整多少名员工从事第三产业?
(2)设
,若调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,求
的最大值.





(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整多少名员工从事第三产业?
(2)设


某环线地铁按内、外环线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异).
(1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10分钟,求内环线列车的最小平均速度;
(2)新调整的方案要求内环线列车平均速度为25千米/小时,外环线列车平均速度为30千米/小时.现内、外环线共有18列列车全部投入运行,要使内外环线乘客的最长候车时间之差不超过1分钟,向内、外环线应各投入几列列车运行?
(1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10分钟,求内环线列车的最小平均速度;
(2)新调整的方案要求内环线列车平均速度为25千米/小时,外环线列车平均速度为30千米/小时.现内、外环线共有18列列车全部投入运行,要使内外环线乘客的最长候车时间之差不超过1分钟,向内、外环线应各投入几列列车运行?
如图1,一艺术拱门由两部分组成,下部为矩形
的长分别为
米和
米,上部是圆心为
的劣弧
,
(1)求图1中拱门最高点到地面的距离:
(2)现欲以
点为支点将拱门放倒,放倒过程中矩形
所在的平面始终与地面垂直,如图2、图3、图4所示,设
与地面水平线
所成的角为
.若拱门上的点到地面的最大距离恰好为
到地面的距离,试求
的取值范围.






(1)求图1中拱门最高点到地面的距离:
(2)现欲以








某温室大棚规定,一天中,从中午12点到第二天上午8点为保温时段,其余4小时为工作作业时段,从中午12点连续测量20小时,得出此温室大棚的温度y(单位:度)与时间t(单位:小时,
)近似地满足函数
关系,其中,b为大棚内一天中保温时段的通风量。
(1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度(精确到0.1℃);
(2)若要保持一天中保温时段的最低温度不小于17℃,求大棚一天中保温时段通风量的最小值。


(1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度(精确到0.1℃);
(2)若要保持一天中保温时段的最低温度不小于17℃,求大棚一天中保温时段通风量的最小值。
将一张长方形的纸片沿着一条直线折叠,折痕(线段)将纸片分成两部分,其中纸片的长
,宽
.

(1)按图1情形折叠,其中
在边
上,
在边
上,设
,若
的面积为
,求
的取值范围;
(2)按图2情形折叠,其中
分别在边
上(
不与长方形顶点重合),记折痕长
为
,若四边形
的面积为
,求折痕长
的取值范围.



(1)按图1情形折叠,其中








(2)按图2情形折叠,其中








如图,某沿海地区计划铺设一条电缆联通A,B两地,A地位于东西方向的直线MN上的陆地处,B地位于海上一个灯塔处,在A地用测角器测得
,在A地正西方向4km的点C处,用测角器测得
.拟定铺设方案如下:在岸MN上选一点P,先沿线段AP在地下铺设,再沿线段PB在水下铺设.预算地下、水下的电缆铺设费用分别为2万元/km和4万元/km,设
,
,铺设电缆的总费用为
万元.

(1)求函数
的解析式;
(2)试问点P选在何处时,铺设的总费用最少,并说明理由.






(1)求函数

(2)试问点P选在何处时,铺设的总费用最少,并说明理由.