刷题首页
题库
高中数学
题干
某环线地铁按内、外环线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异).
(1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10分钟,求内环线列车的最小平均速度;
(2)新调整的方案要求内环线列车平均速度为25千米/小时,外环线列车平均速度为30千米/小时.现内、外环线共有18列列车全部投入运行,要使内外环线乘客的最长候车时间之差不超过1分钟,向内、外环线应各投入几列列车运行?
上一题
下一题
0.99难度 解答题 更新时间:2019-11-20 02:10:44
答案(点此获取答案解析)
同类题1
某单位有员工1000名,平均每人每年创造利润10万元,为了增加企业竞争力,决定优化产业结构,调整出
(
)名员工从事第三产业,调整后这
名员工他们平均每人创造利润为
万元,剩下的员工平均每人每年创造的利润可以提高
.
(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整多少名员工从事第三产业?
(2)设
,若调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,求
的最大值.
同类题2
某工厂拟建一个平面图形为矩形,且总面积为400平方米的三级污水处理池,如图R3-1所示.已知池外墙造价为每米200元,中间两条隔墙造价为每米250元,池底造价为每平方米80元(池壁的厚度忽略不计,且污水处理池无盖).若使污水处理池的总造价最低,那么污水处理池的长和宽分别为( )
A.40米,10米
B.20米,20米
C.30米,
米
D.50米,8米
同类题3
如图,某小区内有两条互相垂直的道路
与
,平面直角坐标系
的第一象限有一块空地
,其边界
是函数
的图象,前一段曲线
是函数
图象的一部分,后一段
是一条线段.测得
到
的距离为8米,到
的距离为16米,
长为20米.
(1)求函数
的解析式;
(2)现要在此地建一个社区活动中心,平面图为梯形
(其中
,
为两底边),问:梯形的高为多少米时,该社区活动中心的占地面积最大,并求出最大面积.
同类题4
下图为某仓库一侧墙面的示意图,其下部是矩形ABCD,上部是圆弧AB,该圆弧所在的圆心为O,为了调节仓库内的湿度和温度,现要在墙面上开一个矩形的通风窗EFGH(其中E,F在圆弧AB上,G,H在弦AB上).过O作
,交AB 于M,交EF于N,交圆弧AB于P,已知
(单位:m),记通风窗EFGH的面积为S(单位:
)
(1)按下列要求建立函数关系式:
(i)设
,将S表示成
的函数;
(ii)设
,将S表示成
的函数;
(2)试问通风窗的高度MN为多少时,通风窗EFGH的面积S最大?
同类题5
某矩形花园
,
,
,
是
的中点,在该花园中有一花圃其形状是以
为直角顶点的内接Rt△
,其中E、F分别落在线段
和线段
上如图.分别记
为
,
的周长为
,
的面积为
。
(1)试求
的取值范围;
(2)
为何值时
的值为最小;并求
的最小值.
相关知识点
函数与导数
函数的应用
函数模型及其应用
函数模型的应用实例
建立拟合函数模型解决实际问题