- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- + 函数模型的应用实例
- 利用给定函数模型解决实际问题
- 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知某帆船中心比赛场馆区的海面上每天海浪高度y(米)可看作时间
(单位:小时)的函数,记作
,经过长期观测,
的曲线可近似地看成是函数
,下列是某日各时的浪高数据.
(1)根据以上数据,求出
的解析式;
(2)为保证安全,比赛时的浪高不能高于
米,则在一天中的哪些时间可以进行比赛.




t/小时 | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y/米 | ![]() | 1 | ![]() | 1 | ![]() | 1 | ![]() | 1 | ![]() |
(1)根据以上数据,求出

(2)为保证安全,比赛时的浪高不能高于

某企业生产
,
两种产品,根据市场调查与预测,
产品的利润
与投资
成正比,其关系如图(1)所示;
产品的利润
与投资
的算术平方根成正比,其关系如图(2)所示(注:利润
和投资
的单位均为万元).


图(1) 图(2)
(1)分别求
,
两种产品的利润
关于投资
的函数解析式.
(2)已知该企业已筹集到18万元资金,并将全部投入
,
两种产品的生产.
①若平均投入两种产品的生产,可获得多少利润?
②如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润为多少万元?












图(1) 图(2)
(1)分别求




(2)已知该企业已筹集到18万元资金,并将全部投入


①若平均投入两种产品的生产,可获得多少利润?
②如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润为多少万元?
某公司一年购买某种货物900吨,现分次购买,若每次购买x吨,运费为9万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是( )
A.10 | B.15 | C.30 | D.45 |
如图,


















(1)求


(2)已知警员的对讲机的有效通话距离是






某公司计划投资A、B两种金融产品,根据市场调查与预测,A产品的利润与投资量的算术平方根成正比例,其关系如图1,B产品的利润与投资量成正比例,其关系如图2(注:利润与投资量的单位:万元).

(1)分别将A、B两产品的利润表示为投资量的函数关系式;
(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?

(1)分别将A、B两产品的利润表示为投资量的函数关系式;
(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?
某租车公司给出的财务报表如下:
有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为
.
(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);
(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里).
年度 项目 | 2014年 (1-12月) | 2015年 (1-12月) | 2016年 (1-11月) |
接单量(单) | 14463272 | 40125125 | 60331996 |
油费(元) | 214301962 | 581305364 | 653214963 |
平均每单油费![]() | 14.82 | 14.49 | |
平均每单里程![]() | 15 | 15 | |
每公里油耗![]() | 0.7 | 0.7 | 0.7 |
有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为

(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);
(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里).
某心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其注意力指数p与听课时间t之间的关系满足如图所示的曲线.当t∈(0,14]时,曲线是二次函数图象的一部分,当t∈[14,40]时,曲线是函数
(
且
)图象的一部分.根据专家研究,当注意力指数p大于等于80时听课效果最佳.

(1)试求
的函数关系式;
(2)一道数学难题,讲解需要22分钟,问老师能否经过合理安排在学生听课效果最佳时讲完?请说明理由.




(1)试求

(2)一道数学难题,讲解需要22分钟,问老师能否经过合理安排在学生听课效果最佳时讲完?请说明理由.
华东师大二附中乐东黄流中学位于我国南海边,有一片美丽的沙滩和一弯天然的海滨浴场.如图,海岸线MAN,
,
(海岸线MAN上方是大海),现用长为BC的栏网围成一个三角形学生游泳场所,其中
.

(1)若
,求三角形游泳场所面积最大值;
(2)若BC=600,
,由于学生人数的增加需要扩大游泳场所面积,现在折线MBCN上方选点D,现用长为BD,DC的栏围成一个四边形游泳场所DBAC,使
,求四边形游泳场所DBAC的最大面积.




(1)若

(2)若BC=600,


近年来,我国多地区遭遇了雾霾天气,引起口罩热销.某品牌口罩原来每只成本为6元.售价为8元,月销售5万只.
(1)据市场调查,若售价每提高0.5元,月销售量将相应减少0.2万只,要使月总利润不低于原来的月总利润(月总利润
月销售总收入
月总成本),该口罩每只售价最多为多少元?
(2)为提高月总利润,厂家决定下月进行营销策略改革,计划每只售价
元,并投入
万元作为营销策略改革费用.据市场调查,每只售价每提高0.5元,月销售量将相应减少
万只.则当每只售价
为多少时,下月的月总利润最大?并求出下月最大总利润.
(1)据市场调查,若售价每提高0.5元,月销售量将相应减少0.2万只,要使月总利润不低于原来的月总利润(月总利润


(2)为提高月总利润,厂家决定下月进行营销策略改革,计划每只售价




图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD和BC上的射影分别为H,M.已知HM = 5 m,BC = 10 m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH =
.
(1)求屋顶面积S关于
的函数关系式;
(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其 高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当
为何值时,总造价最低? 


(1)求屋顶面积S关于

(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其 高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当

