市实施全域旅游,将乡村旅游公路建设与特色田园乡村发展结合,精心打造全长365公里的“1号公路”,对内串联区域内主要景区景点和自然村,对外通达周边县(市),以路引景、为景串线,形成一个“大环小圈、内连外引”的路网体系.如今的“1号公路”,不仅成为该市旅游业的“颜值担当”,更成为推动乡村振兴的“实力担当”,农村居住环境日益改善,新农村别墅随处可见.图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面是全等的等腰梯形,左右两坡屋面是全等的三角形.点在平面上的射影分别为(即:平面,垂足为,垂足为).已知,梯形的面积是面积的2.2倍..

(1)当时,求屋顶面积的大小;
(2)求屋顶面积关于的函数关系式;
(3)已知上部屋顶造价与屋顶面积成正比,比例系数为为正的常数),下部主体造价与其高度成正比,比例系数为.现欲造一栋上、下总高度为的别墅,试问:当为何值时,总造价最低?
当前题号:1 | 题型:解答题 | 难度:0.99
某抛物线型拱桥水面宽度20m,拱顶离水面4m,现有一船宽9m,船在水面上高3m
(1)建立适当平面直角坐标系,求拱桥所在抛物线标准方程;
(2)计算这条船能否从桥下通过.
当前题号:2 | 题型:解答题 | 难度:0.99
某生物探测器在水中逆流行进时,所消耗的能量为EcvnT,其中v为行进时相对于水的速度,T为行进时的时间(单位:h),c为常数,n为能量次级数,如果水的速度为4km/h,该生物探测器在水中逆流行进200km
(1)求T关于v的函数关系式;
(2)①当能量次级数为2时,求探测器消耗的最少能量;
②当能量次级数为3时,试确定v的大小,使该探测器消耗的能量最少.
当前题号:3 | 题型:解答题 | 难度:0.99
保护环境,防治环境污染越来越得到人们的重视,某企业在现有设备下每日生产总成本(单位:万元)与日产量(单位:吨)之间的函数关系式为.现为了减少大气污染,该企业引进了除尘设备,每吨产品除尘费用为万元,除尘后,当日产量时,每日生产总成本
(1)求的值;
(2)若每吨产品出厂价为48万元,试求除尘后日产量为多少吨时,每吨产品的利润最大,最大利润为多少万元?
当前题号:4 | 题型:解答题 | 难度:0.99
已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度(单位:℃)对某种鸡的时段产蛋量(单位:)的影响.为此,该企业收集了7个鸡舍的时段控制温度和产蛋量的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.







17.4
82.3
3.6
140
9.7
2935.1
35
 
其中.

(1)根据散点图判断,哪一个更适宜作为该种鸡的时段产蛋量关于鸡舍时段控制温度的回归方程类型?(给判断即可,不必说明理由)
(2)若用作为回归方程模型,根据表中数据,求出关于的回归方程;
(3)当时段控制温度为28℃时,鸡的时段产蛋量的预报值(精确到0.1)是多少?
附:①对于一组具有线性相关系的数据,其回归直线的斜率和截距的最小二乘估计分别为.
②参考值.





0.08
0.47
2.72
20.09
1096.63
 
当前题号:5 | 题型:解答题 | 难度:0.99
某投资公司计划投资两种金融产品,根据市场调查与预测,产品的利润与投资量x成正比例,其关系如图1,产品的利润与投资量x的算术平方根成正比例,其关系如图2;(利润与投资量单位:万元)

(1)分别将两产品的利润表示为投资量的函数关系式;
(2)该公司已有20万元资金,并全部投入两种产品中,问:怎样分配这20万元投资,才能使公司获得最大利润?其最大利润为多少万元?
当前题号:6 | 题型:解答题 | 难度:0.99
已知某民族品牌手机生产商为迎合市场需求,每年都会研发推出一款新型号手机.该公司现研发了一款新型智能手机并投入生产,生产这款手机的月固定成本为80万元,每生产1千台,须另投入27万元,设该公司每月生产千台并能全部销售完,每1千台的销售收入为万元,且.为更好推广该产品,手机生产商每月还支付各类广告费用20万元.
(Ⅰ)写出月利润(万元)关于月产量(千台)的函数解析式;
(Ⅱ)当月产量为多少千台时,该公司在这一型号的手机生产中所获月利润最大?
当前题号:7 | 题型:解答题 | 难度:0.99
某大学生参加社会实践活动,对某公司1月份至6月份销售某种配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如下表所示:
月份
1
2
3
4
5
6
销售单价(元)
9
9.5
10
10.5
11
8
销售量(件)
11
10
8
6
5
14.2
 
(1)根据1至5月份的数据,先求出关于的回归直线方程;6月份的数据作为检验数据.若由回归直线方程得到的预测数据与检验数据的误差不超过,则认为所得到的回归直线方程是理想的.试问所求得的回归直线方程是否理想?
(2)预计在今后的销售中,销售量与销售单价仍然服从(1)中的回归关系,如果该种机器配件的成本是元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考数据:
参考公式:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:
当前题号:8 | 题型:解答题 | 难度:0.99
为了实现绿色发展,避免浪费能源,某市政府计划对居民用电实行阶梯收费的方法.为此,相关部门随机调查了20户居民六月分的月用电量(单位:kwh)和家庭月收入(单位:方元)月用电量数据如下18,63,72,82,93,98,106,10,18,130,134,139,147,163,180,194,212,237,260,324家庭月收入数据如下0.21,0.24,0.35,0.40,0.52,0.60,0.58,0.65,0.65,0.63,0.68,0.80,0.83,0.93,0.97,0.96,1.1,1.2,1.5,1.8
(1)根据国家发改委的指示精神,该市实行3阶阶梯电价,使7%的用户在第一档,电价为0.56元/kwh,20%的用户在第二档,电价为0.61元/kwh,5%的用户在第三档,电价为0.86元/kwh,试求出居民用电费用Q与用电量x间的函数关系式;
(2)以家庭月收入t为横坐标,电量x为纵坐标作出散点图(如图)求出x关于t的回归直线方程(系数四舍五入保留整数);

(3)小明家庭月收入7000元,按上述关系,估计小明家月支出电费多少元?
当前题号:9 | 题型:解答题 | 难度:0.99
已知某产品的总成本C与年产量Q之间的关系为,且当年产量是100时,总成本是6000.设该产品年产量为Q时的平均成本为
(1)求的解析式;
(2)求年产量为多少时,平均成本最小,并求最小值.
当前题号:10 | 题型:解答题 | 难度:0.99