某数学小组到进行社会实践调查,了解到某公司为了实现1000万元利润目标,准备制定激励销售人员的奖励方案:在销售利润超过10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.同学们利用函数知识,设计了如下的函数模型,其中符合公司要求的是(参考数据:)(   )
A.B.C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震释放出的能量(单位:焦耳)与地震里氏震级之间的关系为.
(1)已知地震等级划分为里氏级,根据等级范围又分为三种类型,其中小于级的为“小地震”,介于级到级之间的为“有感地震”,大于级的为“破坏性地震”若某次地震释放能量约焦耳,试确定该次地震的类型;
(2)2008年汶川地震为里氏级,2011年日本地震为里氏级,问:2011年日本地震所释放的能量是2008年汶川地震所释放的能量的多少倍? (取)
当前题号:2 | 题型:解答题 | 难度:0.99
如图,某山地车训练中心有一直角梯形森林区域,其四条边均为道路,其中千米,千米,千米.现有甲、乙两名特训队员进行野外对抗训练,要求同时从地出发匀速前往地,其中甲的行驶路线是,速度为千米/小时,乙的行驶路线是,速度为千米/小时.

(1)若甲、乙两名特训队员到达地的时间相差不超过分钟,求乙的速度的取值范围;
(2)已知甲、乙两名特训队员携带的无线通讯设备有效联系的最大距离是千米.若乙先于甲到达地,且乙从地到地的整个过程中始终能用通讯设备对甲保持有效联系,求乙的速度的取值范围.
当前题号:3 | 题型:解答题 | 难度:0.99
为净化新安江水域的水质,市环保局于2017年底在新安江水域投入一些蒲草,这些蒲草在水中的蔓延速度越来越快,2018年二月底测得蒲草覆盖面积为,2018年三月底测得覆盖面积为,蒲草覆盖面积(单位:)与月份(单位:月)的关系有两个函数模型可供选择.
(Ⅰ)分别求出两个函数模型的解析式;
(Ⅱ)若市环保局在2017年年底投放了的蒲草,试判断哪个函数模型更合适?并说明理由;
(Ⅲ)利用(Ⅱ)的结论,求蒲草覆盖面积达到的最小月份.

(参考数据:

当前题号:4 | 题型:解答题 | 难度:0.99
甲.乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度.跑步速度均相同,则(  )
A.甲先到教室B.乙先到教室
C.两人同时到教室D.谁先到教室不确定
当前题号:5 | 题型:单选题 | 难度:0.99
如图,是一张长、宽的长方形的纸片,现将纸片沿着一条直线折叠,折痕(线段)将纸片分成两部分,面积分别为,().其中点在面积为的部分内,记折痕长为.

(1)若,求的最大值;
(2)若,求的取值范围.
当前题号:6 | 题型:解答题 | 难度:0.99
某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距离车站10km处建仓库,这两项费用y1y2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在距离车站(  )
A.4kmB.5kmC.6kmD.7km
当前题号:7 | 题型:单选题 | 难度:0.99
某种图书,如果以每本2.5元的价格出售,可以售出8万本,若单价每提高0.1元,销售量将减少2000本,如果提价后的单价为元,下列各式中表示销售总收入不低于20万元的是(   )
A.B.
C.D.
当前题号:8 | 题型:单选题 | 难度:0.99
甲厂以千克/小时的速度匀速生产某种产品(生产条件要求),每小时可获得利润是元.
(1)要使生产该产品小时获得的利润不低于元,求的取值范围;
(2)要使生产千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.
当前题号:9 | 题型:解答题 | 难度:0.99
某辆汽车以的速度在高速公路上匀速行驶(考虑到高速公路行车安全,要求)时,每小时的油耗(所需要的汽油量)为,其中为常数.若汽车以的速度行驶时,每小时的油耗为,则=_____,欲使每小时的油耗不超过,则速度的取值范围为_______.
当前题号:10 | 题型:填空题 | 难度:0.99