- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- + 常见的函数模型(1)——二次、分段函数
- 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某县政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照
,
,…,
分成8组,制成了如图1所示的频率分布直方图.

(图1) (图2)
(Ⅰ)通过频率分布直方图,估计该市居民每月的用水量的平均数和中位数(精确到0.01);
(Ⅱ)求用户用水费用
(元)关于月用水量
(吨)的函数关系式;
(Ⅲ)如图2是该县居民李某2017年1~6月份的月用水费
(元)与月份
的散点图,其拟合的线性回归方程是
.若李某2017年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.




(图1) (图2)
(Ⅰ)通过频率分布直方图,估计该市居民每月的用水量的平均数和中位数(精确到0.01);
(Ⅱ)求用户用水费用


(Ⅲ)如图2是该县居民李某2017年1~6月份的月用水费



某上市股票在30天内每股的交易价格
(元)与时间
(天)组成有序对
,点
落在右方图象中的两条线段上,该股票在30天内(包括30天)的日交易量
(万股)与时间
(天)的函数关系为:
,
,

(1)根据提供的图象,写出该种股票每股的交易价格
(元)与时间
(天)所满足的函数关系式;
(2)用
(万元)表示该股票日交易额,写出
关于
的函数关系式,并求出这30天中第几天日交易额最大,最大值为多少?










(1)根据提供的图象,写出该种股票每股的交易价格


(2)用



某小型服装厂生产一种风衣,日销售量
(件)与单价
(元)之间的关系为
,生产
件所需成本为
(元),其中
元,若要求每天获利不少于
元,则日销量
的取值范围是__________.








如图,某机器人的运动轨道是边长为1米的正三角形ABC,开机后它从A点出发,沿轨道先逆时针运动再顺时针运动,每运动6米改变一次运动方向(假设按此方式无限运动下去),运动过程中随时记录逆时针运动的总路程s1和顺时针运动的总路程s2,x为该机器人的“运动状态参数”,规定:逆时针运动时x=s1,顺时针运动时x=-s2,机器人到A点的距离d与x满足函数关系d=f(x),现有如下结论:

①f(x)的值域为[0,1];
②f(x)是以3为周期的函数;
③f(x)是定义在R上的奇函数;
④f(x)在区间[-3,-2]上单调递增.
其中正确的有_________(写出所有正确结论的编号).

①f(x)的值域为[0,1];
②f(x)是以3为周期的函数;
③f(x)是定义在R上的奇函数;
④f(x)在区间[-3,-2]上单调递增.
其中正确的有_________(写出所有正确结论的编号).
已知某服装厂生产某种品牌的衣服,销售量
(单位:百件)关于每件衣服的利润
(单位:
元)的函数解析式为
, 则当该服装厂所获效益最大时,


元)的函数解析式为


A.20 | B.60 | C.80 | D.40 |
2017年,在国家创新驱动战略下,北斗系统作为一项国家高科技工程,一个开放型的创新平台,1400多个北斗基站遍布全国,上万台设备组成星地“一张网”,国内定位精度全部达到亚米级,部分地区达到分米级,最高精度甚至可以达到厘米或毫米级。最近北斗三号工程耗资
元建成一大型设备,已知这台设备维修和消耗费用第一年为
元,以后每年增加
元(
是常数),用
表示设备使用的年数,记设备年平均维修和消耗费用为
,即
(设备单价
设备维修和消耗费用)
设备使用的年数.
(1)求
关于
的函数关系式;
(2)当
,
时,求这种设备的最佳更新年限.









(1)求


(2)当


某市出租车的计价标准是:3 km以内(含3 km)10元;超过3 km但不超过18 km的部分1元/km;超出18 km的部分2元/km.
(1)如果某人乘车行驶了20 km,他要付多少车费?
(2)某人乘车行驶了x km,他要付多少车费?
(3)如果某人付了22元的车费,他乘车行驶了多远?
(1)如果某人乘车行驶了20 km,他要付多少车费?
(2)某人乘车行驶了x km,他要付多少车费?
(3)如果某人付了22元的车费,他乘车行驶了多远?
某公司利用
线上、实体店线下销售产品
,产品
在上市
天内全部售完.据统计,线上日销售量
、线下日销售量
(单位:件)与上市时间
天的关系满足:

,产品
每件的销售利润为
(单位:元)(日销售量
线上日销售量
线下日销售量).
(1)设该公司产品
的日销售利润为
,写出
的函数解析式;
(2)产品
上市的哪几天给该公司带来的日销售利润不低于
元?















(1)设该公司产品



(2)产品


某公司为了获得更大的收益,每年要投入一定的资金用于广告促销,经调查,每年投入广告费t百万元,可增加销售额约为
百万元.
(Ⅰ)若该公司将一年的广告费控制在4百万元之内,则应投入多少广告费,才能使该公司由此增加的收益最大?
(Ⅱ)现该公司准备共投入5百万元,分别用于广告促销和技术改造,经预测,每投入技术改造费
百万元,可增加的销售额约为
百万元,请设计一个资金分配方案,使该公司由此增加的收益最大.
(注:收益=销售额-投入,这里除了广告费和技术改造费,不考虑其他的投入)

(Ⅰ)若该公司将一年的广告费控制在4百万元之内,则应投入多少广告费,才能使该公司由此增加的收益最大?
(Ⅱ)现该公司准备共投入5百万元,分别用于广告促销和技术改造,经预测,每投入技术改造费


(注:收益=销售额-投入,这里除了广告费和技术改造费,不考虑其他的投入)