- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- + 常见的函数模型(1)——二次、分段函数
- 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y1=18-
,B产品的利润y2与投资金额x的函数关系为y2=
(注:利润与投资金额单位:万元).
(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;
(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?


(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;
(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?
某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为
万元,年维修费用第一年是
万元,第二年是
万元,第三年是
万元,…,以后逐年递增
万元汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的和平均摊到每一年的费用叫做年平均费用.设这种汽车使用
年的维修费用的和为
,年平均费用为
.
(1)求出函数
,
的解析式;
(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?








(1)求出函数


(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?
某旅游景区的景点
处和
处之间有两种到达方式,一种是沿直线步行,另一种是沿索道乘坐缆车,现有一名游客从
处出发,以
的速度匀速步行,
后到达
处,在
处停留
后,再乘坐缆车回到
处.假设缆车匀速直线运动的速度为
.

(1)求该游客离景点
的距离
关于出发后的时间
的函数解析式,并指出该函数的定义域;
(2)做出(1)中函数的图象,并求该游客离景点
的距离不小于
的总时长.











(1)求该游客离景点



(2)做出(1)中函数的图象,并求该游客离景点


某商家计划投入10万元经销甲,乙两种商品,根据市场调查统计,当投资额为
万元,经销甲,乙两种商品所获得的收益分别为
万元与
万元,其中
,
,当该商家把10万元全部投入经销乙商品时,所获收益为5万元.
(1)求实数a的值;
(2)若该商家把10万元投入经销甲,乙两种商品,请你帮他制订一个资金投入方案,使他能获得最大总收益,并求出最大总收益.





(1)求实数a的值;
(2)若该商家把10万元投入经销甲,乙两种商品,请你帮他制订一个资金投入方案,使他能获得最大总收益,并求出最大总收益.
2018年非洲猪瘟在东北三省出现,为了进行防控,某地生物医药公司派出技术人员对当地甲乙两个养殖场提供技术服务,方案和收费标准如下:
方案一,公司每天收取养殖场技术服务费40元,对于需要用药的每头猪收取药费2元,不需要用药的不收费;
方案二,公司每天收取养殖场技术服务费120元,若需要用药的猪不超过45头,不另外收费,若需要用药的猪超过45头,超过部分每天收取药费8元.
(1)设日收费为
(单位:元),每天需要用药的猪的数量为
,试写出两种方案中
与
的函数关系式.
(2)若该医药公司从10月1日起对甲养殖场提供技术服务,10月31日该养殖场对其中一个猪舍9月份和10月份猪的发病数量进行了统计,得到如下
列联表.

根据以上列联表,判断是否有
的把握认为猪未发病与医药公司提供技术服务有关.
附:
(3)当地的丙养殖场对过去100天猪的发病情况进行了统计,得到如上图所示的条形统计图.依据该统计数据,从节约养殖成本的角度去考虑,若丙养殖场计划结合以往经验从两个方案中选择一个,那么选择哪个方案更合适,并说明理由.
方案一,公司每天收取养殖场技术服务费40元,对于需要用药的每头猪收取药费2元,不需要用药的不收费;
方案二,公司每天收取养殖场技术服务费120元,若需要用药的猪不超过45头,不另外收费,若需要用药的猪超过45头,超过部分每天收取药费8元.
(1)设日收费为




(2)若该医药公司从10月1日起对甲养殖场提供技术服务,10月31日该养殖场对其中一个猪舍9月份和10月份猪的发病数量进行了统计,得到如下

| 9月份 | 10月份 | 合计 |
未发病 | 40 | 85 | 125 |
发病 | 65 | 20 | 85 |
合计 | 105 | 105 | 210 |

根据以上列联表,判断是否有

附:

![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
(3)当地的丙养殖场对过去100天猪的发病情况进行了统计,得到如上图所示的条形统计图.依据该统计数据,从节约养殖成本的角度去考虑,若丙养殖场计划结合以往经验从两个方案中选择一个,那么选择哪个方案更合适,并说明理由.
某城市地铁项目正在紧张建设中,通车后将给市民出行带来便利.已知某条线路通车后,地铁的发车时间间隔
(单位:分钟)满足
.经测算,地铁载客量与发车时间间隔
相关,当
时地铁为满载状态,载客量为
人,当
时,载客量会减少,减少的人数与
的平方成正比,且发车时间间隔为
分钟时的载客量为
人,记地铁载客量为
.
(1)求
的表达式,并求当发车时间间隔为
分钟时,地铁的载客量;
(2)若该线路每分钟的净收益为
(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?每分钟的最大净收益为多少?










(1)求


(2)若该线路每分钟的净收益为

某工厂有一个容量为300吨的水塔,每天从早上6时起到晚上10时止供应该厂的生产和生活用水.已知该厂生活用水为每小时10吨,生产用水量
(吨)与时间
(单位:小时,且规定早上6时
)的函数关系式为:
,水塔的进水量分为10级,第一级每小时进水10吨,以后每提高一级,每小时进水量就增加10吨.若某天水塔原有水100吨,在开始供水的同时打开进水管.
(1)若进水量选择为
级,水塔中剩余水量为
吨,试写出
与
的函数关系式;
(2)如何选择进水量,既能始终保证该厂的用水(水塔中水不空)又不会使水溢出?




(1)若进水量选择为




(2)如何选择进水量,既能始终保证该厂的用水(水塔中水不空)又不会使水溢出?
某汽车公司为调查4S店个数对该公司汽车销量的影响,对同等规模的A,B,C,D四座城市的4S店一个月某型号汽车销量进行了统计,结果如下表:

(1)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;
(2)根据统计每个城市汽车的盈利
(万元)与该城市4S店的个数x符合函数
,
,为扩大销售,该公司在同等规模的城市E预计要开设多少个4S店,才能使E市的4S店一个月某型号骑车销售盈利达到最大,并求出最大值.
附:回归方程
中的斜率和截距的最小二乘法估计公式分别为:
,
城市 | A | B | C | D |
4S店个数x | 3 | 4 | 6 | 7 |
销售台数y | 18 | 26 | 34 | 42 |

(1)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;
(2)根据统计每个城市汽车的盈利



附:回归方程



某商场销售一种水果的经验表明,该水果每日的销售量
(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数.已知销售价格为6元/千克时,每日可售出该水果52千克.
(1)求
的值;
(2)若该水果的成本为5元/千克,试确定销售价格
的值,使商场每日销售该水果所获得的利润最大,并求出最大利润.





(1)求

(2)若该水果的成本为5元/千克,试确定销售价格

某银行推出一款短期理财产品,约定如下:
(1)购买金额固定;
(2)购买天数可自由选择,但最短3天,最长不超过10天;
(3)购买天数
与利息
的关系,可选择下述三种方案中的一种:
方案一:
;方案二:
;方案三:
.
请你根据以上材料,研究下面两个问题:
(1)结合所学的数学知识和方法,用其它方式刻画上述三种方案的函数特征;
(2)依据你的分析,给出一个最佳理财方案.
(1)购买金额固定;
(2)购买天数可自由选择,但最短3天,最长不超过10天;
(3)购买天数


方案一:



请你根据以上材料,研究下面两个问题:
(1)结合所学的数学知识和方法,用其它方式刻画上述三种方案的函数特征;
(2)依据你的分析,给出一个最佳理财方案.