- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- + 常见的函数模型(1)——二次、分段函数
- 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设某商品的利润只由生产成本和销售收入决定.生产成本C(单位:万元)与生产量x(单位:千件)间的函数关系是C=3+x;销售收入S(单位:万元)与生产量x间的函数关系是
.
(Ⅰ)把商品的利润表示为生产量x的函数;
(Ⅱ)为使商品的利润最大化,应如何确定生产量?

(Ⅰ)把商品的利润表示为生产量x的函数;
(Ⅱ)为使商品的利润最大化,应如何确定生产量?
某企业为打入国际市场,决定从
,
两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)
其中年固定成本与年生产的件数无关,
为待定常数,其值由生产
产品的原材料价格决定,预计
.另外,年销售
件
产品时需上交
万美元的特别关税.假设生产出来的产品都能在当年销售出去.
(1)写出该厂分别投资生产
,
两种产品的年利润
、
与生产相应产品的件数
之间的函数关系,并指明其定义域;
(2)如何投资才可获得最大年利润?请你做出规划.


项目类别 | 年固定成本 | 每件产品成本 | 每件产品销售价 | 每年最多可生产的件数 |
![]() | 20 | ![]() | 10 | 200 |
![]() | 40 | 8 | 18 | 120 |
其中年固定成本与年生产的件数无关,






(1)写出该厂分别投资生产





(2)如何投资才可获得最大年利润?请你做出规划.
某商品每千克定价10元,商家采取了如下的促销方式:
(1)求一次购买
(单位:千克),此商品的花费
(单位:元)的函数解析式;
(2)某人一次购买此商品400元,问他能购得此商品多少千克?
一次购买量 | 促销方式 |
不多于20千克 | 原价出售 |
多于20千克且不多于40千克 | 不多于20千克部分,原价出售 多于20千克部分,九折出售 |
多于40千克 | 不多于20千克部分,原价出售 多于20千克且不多于40千克部分,九折出售 多于40千克部分八折出售 |
(1)求一次购买


(2)某人一次购买此商品400元,问他能购得此商品多少千克?
某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产x万件,需另投入流动成本C(x)万元,当年产量小于7万件时,C(x)=
x2+2x(万元);当年产量不小于7万件时,C(x)=6x+1nx+
﹣17(万元).已知每件产品售价为6元,假若该同学生产的产M当年全部售完.
(1)写出年利润P(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收人﹣固定成本﹣流动成本
(2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?(取e3≈20)


(1)写出年利润P(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收人﹣固定成本﹣流动成本
(2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?(取e3≈20)
某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为x(单位:元,x>0)时,销售量q(x)(单位:百台)与x的关系满足:若x不超过20,则q(x)=
;若x大于或等于180,则销售量为零;当20≤x≤180时,q(x)=a-b
(a,b为实常数).
(1)求函数q(x)的表达式;
(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.


(1)求函数q(x)的表达式;
(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.
如图,半圆
是某爱国主义教育基地一景点的平面示意图,半径
的长为
百米.为了保护景点,基地管理部门从道路
上选取一点
,修建参观线路
,且
,均与半圆相切,四边形
是等腰梯形,设
百米,记修建每
百米参观线路的费用为
万元,经测算
.


(1)用
表示线段
的长;
(2)求修建参观线路的最低费用.














(1)用


(2)求修建参观线路的最低费用.
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图(2)的抛物线段表示.


(1)写出图(1)表示的市场售价与时间的函数关系式
;写出图(2)表示的种植成本与时间的函数关系式
;
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/
kg,时间单位:天.)


(1)写出图(1)表示的市场售价与时间的函数关系式


(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/

国家规定个人稿费纳税办法为:不超过800元的不纳税,超过800元的但不超过4000元的按超800元
纳税,超过4000元的按全稿费的
纳税,张先生出了一本书共纳税420元,则张先生的稿费为( )元.


A.3600 | B.3800 | C.4000 | D.4200 |
“绿水青山就是金山银山”,为了保护环境,减少空气污染,某空气净化器制造厂,决定投入生产某种惠民型的空气净化器.根据以往的生产销售经验得到月生产销售的统计规律如下:①月固定生产成本为2万元;②每生产该型号空气净化器1百台,成本增加1万元;③月生产
百台的销售收入
(万元).假定生产的该型号空气净化器都能卖出(利润=销售收入﹣生产成本).
(1)为使该产品的生产不亏本,月产量
应控制在什么范围内?
(2)该产品生产多少台时,可使月利润最大?并求出最大值.


(1)为使该产品的生产不亏本,月产量

(2)该产品生产多少台时,可使月利润最大?并求出最大值.
药材人工种植技术具有养殖密度高、经济效益好的特点.研究表明:人工种植药材时,某种药材在一定的条件下,每株药材的年平均生长量
单位:千克
是每平方米种植株数x的函数.当x不超过4时,v的值为2;当
时,v是x的一次函数,其中当x为10时,v的值为4;当x为20时,v的值为0.
当
时,求函数v关于x的函数表达式;
当每平方米种植株数x为何值时,每平方米药材的年生长总量
单位:千克
取得最大值?并求出这个最大值.
年生长总量
年平均生长量
种植株数











