- 集合与常用逻辑用语
- 函数与导数
- + 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某企业计划投资生产甲、乙两种产品,根据长期收益率市场预测,投资生产甲产品的利润与投资额成正比,投资生产乙产品的利润与投资额的算术平方根成正比,已知投资1万元时,甲、乙两类产品的利润分别为0.125万元和0.5万元.
(1)分别写出两类产品的利润与投资额
的函数关系式;
(2)该企业有100万元资金,全部用于生产甲、乙产品,问怎样分配资金能使得利润之和最大,最大利润为多少万元?
(1)分别写出两类产品的利润与投资额

(2)该企业有100万元资金,全部用于生产甲、乙产品,问怎样分配资金能使得利润之和最大,最大利润为多少万元?
美国对中国芯片的技术封锁激发了中国“芯”的研究热潮.某公司研发的
,
两种芯片都已经获得成功.该公司研发芯片已经耗费资金
千万元,现在准备投入资金进行生产.经市场调查与预测,生产
芯片的毛收入与投入的资金成正比,已知每投入
千万元,公司获得毛收入
千万元;生产
芯片的毛收入
(千万元)与投入的资金
(千万元)的函数关系为
,其图像如图所示.

(1)试分别求出生产
,
两种芯片的毛收入
(千万元)与投入资金
(千万元)的函数关系式;
(2)现在公司准备投入
亿元资金同时生产
,
两种芯片,求可以获得的最大利润是多少.











(1)试分别求出生产




(2)现在公司准备投入



某城市地铁项目正在紧张建设中,通车后将给市民出行带来便利.已知某条线路通车后,地铁的发车时间间隔
(单位:分钟)满足
.经测算,地铁载客量与发车时间间隔
相关,当
时地铁为满载状态,载客量为
人,当
时,载客量会减少,减少的人数与
的平方成正比,且发车时间间隔为
分钟时的载客量为
人,记地铁载客量为
.
(1)求
的表达式,并求当发车时间间隔为
分钟时,地铁的载客量;
(2)若该线路每分钟的净收益为
(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?每分钟的最大净收益为多少?










(1)求


(2)若该线路每分钟的净收益为

某工厂有一个容量为300吨的水塔,每天从早上6时起到晚上10时止供应该厂的生产和生活用水.已知该厂生活用水为每小时10吨,生产用水量
(吨)与时间
(单位:小时,且规定早上6时
)的函数关系式为:
,水塔的进水量分为10级,第一级每小时进水10吨,以后每提高一级,每小时进水量就增加10吨.若某天水塔原有水100吨,在开始供水的同时打开进水管.
(1)若进水量选择为
级,水塔中剩余水量为
吨,试写出
与
的函数关系式;
(2)如何选择进水量,既能始终保证该厂的用水(水塔中水不空)又不会使水溢出?




(1)若进水量选择为




(2)如何选择进水量,既能始终保证该厂的用水(水塔中水不空)又不会使水溢出?
某汽车公司为调查4S店个数对该公司汽车销量的影响,对同等规模的A,B,C,D四座城市的4S店一个月某型号汽车销量进行了统计,结果如下表:

(1)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;
(2)根据统计每个城市汽车的盈利
(万元)与该城市4S店的个数x符合函数
,
,为扩大销售,该公司在同等规模的城市E预计要开设多少个4S店,才能使E市的4S店一个月某型号骑车销售盈利达到最大,并求出最大值.
附:回归方程
中的斜率和截距的最小二乘法估计公式分别为:
,
城市 | A | B | C | D |
4S店个数x | 3 | 4 | 6 | 7 |
销售台数y | 18 | 26 | 34 | 42 |

(1)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;
(2)根据统计每个城市汽车的盈利



附:回归方程



某商场销售一种水果的经验表明,该水果每日的销售量
(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数.已知销售价格为6元/千克时,每日可售出该水果52千克.
(1)求
的值;
(2)若该水果的成本为5元/千克,试确定销售价格
的值,使商场每日销售该水果所获得的利润最大,并求出最大利润.





(1)求

(2)若该水果的成本为5元/千克,试确定销售价格

某银行推出一款短期理财产品,约定如下:
(1)购买金额固定;
(2)购买天数可自由选择,但最短3天,最长不超过10天;
(3)购买天数
与利息
的关系,可选择下述三种方案中的一种:
方案一:
;方案二:
;方案三:
.
请你根据以上材料,研究下面两个问题:
(1)结合所学的数学知识和方法,用其它方式刻画上述三种方案的函数特征;
(2)依据你的分析,给出一个最佳理财方案.
(1)购买金额固定;
(2)购买天数可自由选择,但最短3天,最长不超过10天;
(3)购买天数


方案一:



请你根据以上材料,研究下面两个问题:
(1)结合所学的数学知识和方法,用其它方式刻画上述三种方案的函数特征;
(2)依据你的分析,给出一个最佳理财方案.
经市场调查:生产某产品需投入年固定成本为
万元,每生产
万件,需另投入流动成本为
万元,在年产量不足
万件时,
(万元),在年产量不小于
万件时,
(万元).通过市场分析,每件产品售价为
元时,生产的商品能当年全部售完.
(1)写出年利润
(万元)关于年产量
(万件)的函数解析式;
(2)当产量为多少时利润最大?并求出最大值.









(1)写出年利润


(2)当产量为多少时利润最大?并求出最大值.