为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算电费每月用电不超过100度仍按原标准收费,超过的部分每度按0.5元计算.
Ⅰ.设月用电x度时,应交电费y元,写出y关于x的函数关系式;
Ⅱ.小明家第一季度缴纳电费情况如下:
月份
一月
二月
三月
合计
缴费金额
76元
63元
45.6元
184.6元
 
问小明家第一季度共用多少度?
当前题号:1 | 题型:解答题 | 难度:0.99

   某市乘出租车计费规定:2公里以内5元,超过2公里不超过8公里的部分按每公里1.6元计费,超过8公里以后按每公里2.4元计费.若甲、乙两地相距10公里,则乘出租车从甲地到乙地共需要支付乘车费为多少元?

当前题号:2 | 题型:解答题 | 难度:0.99
某厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品.根据经验知道,该厂生产这种仪器,次品率与日产量(件)之间大体满足关系:(注:次品率,如表示每生产10件产品,约有1件为次品.其余为合格品.)已知每生产一件合格的仪器可以盈利元,但每生产一件次品将亏损元,故厂方希望定出合适的日产量,
(1)试将生产这种仪器每天的盈利额(元)表示为日产量(件)的函数;
(2)当日产量为多少时,可获得最大利润?
当前题号:3 | 题型:解答题 | 难度:0.99
公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:
其中 x 是仪器的月产量.
(1)将利润表示为月产量 的函数;
(2)当月产量 为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)
当前题号:4 | 题型:解答题 | 难度:0.99
某种商品在天内每克的销售价格(元)与时间的函数图象是如图所示的两条线段(不包含两点);该商品在 30 天内日销售量(克)与时间(天)之间的函数关系如下表所示:

5
15
20
30
销售量
35
25
20
10
 

(1)根据提供的图象,写出该商品每克销售的价格(元)与时间的函数关系式;
(2)根据表中数据写出一个反映日销售量随时间变化的函数关系式;
(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的值.
(注:日销售金额=每克的销售价格×日销售量)
当前题号:5 | 题型:解答题 | 难度:0.99
我校第二教学楼在建造过程中,需建一座长方体形的净水处理池,该长方体的底面积为200平方米,池的深度为5米,如图,该处理池由左右两部分组成,中间是一条间隔的墙壁,池的外围周壁建造单价为400元/平方米,中间的墙壁(不需考虑该墙壁的左右两面)建造单价为100元/平方米,池底建造单价为60元/平方米,池壁厚度忽略不计,问净水池的长为多少时,可使总造价最低?最低价为多少?
当前题号:6 | 题型:解答题 | 难度:0.99
提高过江大桥的车辆通行能力可改善整个城市的交通状况,一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度小于30辆/千米时,车流速度为68千米/小时,研究表明:当时,车流速度与车流密度之间满足函数关系式:,(为常数)。
(1)当时,求函数的解析式;
(2)当车流密度多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大?并求出最大值。
当前题号:7 | 题型:解答题 | 难度:0.99
《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过5000元的部分不纳税,超过5000元的部分为全月纳税所得额,此项税款按下表分段累计计算:

(1)已知张先生的月工资、薪金所得为10000元,问他当月应缴纳多少个人所得税?
(2)设王先生的月工资、薪金所得为元,当月应缴纳个人所得税为元,写出的函数关系式;
当前题号:8 | 题型:解答题 | 难度:0.99
已知某商品的生产成本与产量的函数关系式为,每件商品的价格与产量的函数关系式为,则利润最大时,产量=______.
当前题号:9 | 题型:填空题 | 难度:0.99
某工厂生产一种机器的固定成本(即固定投入)为万元,但每生产一百台,需要新增投入万元,经调查,市场一年对此产品的需求量为台,销售收入为(万元).(),其中是产品售出的数量(单位:百台)
(1)把年利润表示为年产量(单位:百台)的函数;
(2)当年产量为多少时,工厂所获得年利润最大?
当前题号:10 | 题型:解答题 | 难度:0.99