- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- + 常见的函数模型(1)——二次、分段函数
- 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算电费每月用电不超过100度仍按原标准收费,超过的部分每度按0.5元计算.
Ⅰ.设月用电x度时,应交电费y元,写出y关于x的函数关系式;
Ⅱ.小明家第一季度缴纳电费情况如下:
问小明家第一季度共用多少度?
Ⅰ.设月用电x度时,应交电费y元,写出y关于x的函数关系式;
Ⅱ.小明家第一季度缴纳电费情况如下:
月份 | 一月 | 二月 | 三月 | 合计 |
缴费金额 | 76元 | 63元 | 45.6元 | 184.6元 |
问小明家第一季度共用多少度?
某市乘出租车计费规定:2公里以内5元,超过2公里不超过8公里的部分按每公里1.6元计费,超过8公里以后按每公里2.4元计费.若甲、乙两地相距10公里,则乘出租车从甲地到乙地共需要支付乘车费为多少元?
某厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品.根据经验知道,该厂生产这种仪器,次品率
与日产量
(件)之间大体满足关系:
(注:次品率
,如
表示每生产10件产品,约有1件为次品.其余为合格品.)已知每生产一件合格的仪器可以盈利
元,但每生产一件次品将亏损
元,故厂方希望定出合适的日产量,
(1)试将生产这种仪器每天的盈利额
(元)表示为日产量
(件)的函数;
(2)当日产量
为多少时,可获得最大利润?







(1)试将生产这种仪器每天的盈利额


(2)当日产量

公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:
其中
x 是仪器的月产量.
(1)将利润
表示为月产量 
的函数;
(2)当月产量
为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)

其中

(1)将利润



(2)当月产量



某种商品在天
内每克的销售价格
(元)与时间
的函数图象是如图所示的两条线段
(不包含
两点);该商品在 30 天内日销售量
(克)与时间
(天)之间的函数关系如下表所示:

(1)根据提供的图象,写出该商品每克销售的价格
(元)与时间
的函数关系式;
(2)根据表中数据写出一个反映日销售量
随时间
变化的函数关系式;
(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的
值.
(注:日销售金额=每克的销售价格×日销售量)







第![]() | 5 | 15 | 20 | 30 |
销售量![]() | 35 | 25 | 20 | 10 |

(1)根据提供的图象,写出该商品每克销售的价格


(2)根据表中数据写出一个反映日销售量


(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的

(注:日销售金额=每克的销售价格×日销售量)
我校第二教学楼在建造过程中,需建一座长方体形的净水处理池,该长方体的底面积为200平方米,池的深度为5米,如图,该处理池由左右两部分组成,中间是一条间隔的墙壁,池的外围周壁建造单价为400元/平方米,中间的墙壁(不需考虑该墙壁的左右两面)建造单价为100元/平方米,池底建造单价为60元/平方米,池壁厚度忽略不计,问净水池的长
为多少时,可使总造价最低?最低价为多少?


提高过江大桥的车辆通行能力可改善整个城市的交通状况,一般情况下,大桥上的车流速度
(单位:千米/小时)是车流密度
(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度小于30辆/千米时,车流速度为68千米/小时,研究表明:当
时,车流速度
与车流密度
之间满足函数关系式:
,(
为常数)。
(1)当
时,求函数
的解析式;
(2)当车流密度
多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)
可以达到最大?并求出最大值。







(1)当


(2)当车流密度


《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过5000元的部分不纳税,超过5000元的部分为全月纳税所得额,此项税款按下表分段累计计算:

(1)已知张先生的月工资、薪金所得为10000元,问他当月应缴纳多少个人所得税?
(2)设王先生的月工资、薪金所得为
元,当月应缴纳个人所得税为
元,写出
与
的函数关系式;

(1)已知张先生的月工资、薪金所得为10000元,问他当月应缴纳多少个人所得税?
(2)设王先生的月工资、薪金所得为




某工厂生产一种机器的固定成本(即固定投入)为
万元,但每生产一百台,需要新增投入
万元,经调查,市场一年对此产品的需求量为
台,销售收入为
(万元).(
),其中
是产品售出的数量(单位:百台)
(1)把年利润
表示为年产量
(单位:百台)的函数;
(2)当年产量为多少时,工厂所获得年利润最大?






(1)把年利润


(2)当年产量为多少时,工厂所获得年利润最大?