- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- + 常见的函数模型(1)——二次、分段函数
- 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,没售出1吨该商品可获利润0.5万元,未售出的商品,每1吨亏损0.3万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了130吨该商品,现以
(单位:吨,
)表示下一个销售季度的市场需求量,
(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.

(Ⅰ)视
分布在各区间内的频率为相应的概率,求
;
(Ⅱ)将
表示为
的函数,求出该函数表达式;
(Ⅲ)在频率分布直方图的市场需求量分组中,以各组的区间中点值(组中值)代表该组的各个值,并以市场需求量落入该区间的频率作为市场需求量取该组中值的概率(例如
,则取
的概率等于市场需求量落入
的频率),求
的分布列及数学期望
.




(Ⅰ)视


(Ⅱ)将


(Ⅲ)在频率分布直方图的市场需求量分组中,以各组的区间中点值(组中值)代表该组的各个值,并以市场需求量落入该区间的频率作为市场需求量取该组中值的概率(例如





某产品按质量分10个档次,生产最低档次的利润是8元/件;每提高一个档次,利润每件增加2元,每提高一个档次,产量减少3件,在相同时间内,最低档次的产品可生产60件.问:在相同时间内,生产第几档次的产品可获得最大利润?(最低档次为第一档次)
整改校园内一块长为15 m,宽为11 m的长方形草地(如图A),将长减少1 m,宽增加1 m(如图B).问草地面积是增加了还是减少了?假设长减少x m,宽增加x m(x>0),试研究以下问题:

x取什么值时,草地面积减少?
x取什么值时,草地面积增加?

x取什么值时,草地面积减少?
x取什么值时,草地面积增加?
为更好实施乡村振兴战略,加强村民对本村事务的参与和监督,根据《村委会组织法》,某乡镇准备在各村推选村民代表.规定各村每
户推选
人,当全村户数除以
所得的余数大于
时再增加
人.那么,各村可推选的人数
与该村户数
之间的函数关系用取整函数
(
表示不大于
的最大整数)可以表示为( )










A.![]() | B.![]() | C.![]() | D.![]() |
某农家旅游公司有客房300间,每间日房租为20元,每天客都满.公司欲提高档次,并提高租金.根据市场调查:如果每间日房租每增加2元,客房出租数就会减少10间.请你根据以上信息回答下列问题.
(1)当客房租金提高到每间日房租28元时,相应的客房出租数变为多少,当日所获租金是多少?
(2)若不考虑其他因素,则该旅游公司将房间租金提高到多少时,每天客房所获租金最多?最多是多少?
(1)当客房租金提高到每间日房租28元时,相应的客房出租数变为多少,当日所获租金是多少?
(2)若不考虑其他因素,则该旅游公司将房间租金提高到多少时,每天客房所获租金最多?最多是多少?
将进货单价为80元的商品按90元一个出售时,能卖出400个,根据经验,该商品若每个涨1元,其销售量就减少20个,为获得最大利润,售价应定为( )元。
A.94 | B.93 | C.96 | D.95 |
共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用,
据市场分析,每辆单车的营运累计利润y(单位:元)与营运天数x
满足函数关系
式
.
(1)要使营运累计利润高于800元,求营运天数的取值范围;
(2)每辆单车营运多少天时,才能使每天的平均营运利润
的值最大?
据市场分析,每辆单车的营运累计利润y(单位:元)与营运天数x

式

(1)要使营运累计利润高于800元,求营运天数的取值范围;
(2)每辆单车营运多少天时,才能使每天的平均营运利润

今有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是P和Q(万元),它们与投入资金
(万元)的关系,有经验公式
,今有3万元资金投入经营甲、乙两种商品,对甲、乙两种商品的资金投入应分别为多少时,才能获得最大利润?最大利润是多少?


某市自来水公司每两个月(记为一个收费周期)对用户收一次水费,收费标准如下:当每户用水量不超过
吨时,按每吨
元收取;当该用户用水量超过
吨时,超出部分按每吨
元收取.
(1)记某用户在一个收费周期的用水量为
吨,所缴水费为
元,写出
关于
的函数解析式.
(2)在某一个收费周期内,若甲、乙两用户所缴水费的和为
元,且甲、乙两用户用水量之比为
,试求出甲、乙两用户在该收费周期内各自的用水量和水费.




(1)记某用户在一个收费周期的用水量为




(2)在某一个收费周期内,若甲、乙两用户所缴水费的和为

